
Abstract

This paper describes the use of different deep learning architectures (MoDL, VarNet and
SSDU) for the reconstruction of accelerated Magnetic Resonance Imaging (MRI) data.
Data acquisition in MRI is slow and requires different accelerated techniques to be practi-
cally feasible. Model-Based Deep Learning (MoDL) combines model-based reconstruction
schemes with Deep Learning (DL) and likewise, the Variational Network (VarNet) em-
beds a generalized Compressed Sensing (CS) concept within a DL framework. These two
techniques require fully sampled data for training whereas Self-Supervision via Data Un-
dersampling (SSDU) is an approach that can be trained without fully sampled reference
data. We train the three models on the fastMRI brain dataset, perform experiments and
discuss which architecture performs well in different settings as well as the pros and cons.
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1 Introduction

MRI data acquisitions tend to be slow since it collects multi-dimensional k-space data thus,
limiting patient throughput. Techniques like parallel imaging and compressed sensing have
been the standard to make MRIs faster and increase efficiency in the healthcare system.
This is done by collecting the data at sub-Nyquist rates and then reconstructing the im-
age from the undersampled k-space. However, at high acceleration rates, the conventional
approaches to image reconstruction suffers from noise amplification and residual artefacts.
Several ideas inspired by deep learning techniques for computer vision and image process-
ing have been successfully applied to accelerated MRI. MoDL, VarNet and SSDU are such
neural network-based reconstruction strategies.

The MoDL scheme involves a data-consistency (DC) term and a Convolutional Neural Net-
work (CNN) based denoiser. The CNN blocks captures information about the image set
while the data-consistency blocks encourage consistency with the measurements. This al-
ternating algorithm between the CNN block and the DC block yields a deep network when
unrolled. Aggarwal et al. (2019)
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Analogous to the MoDL architecture, Varnet also consists of the data consistency and reg-
ularization terms that are learned via a sequence of T gradient decent steps.
The original paper uses the Inertial Incremental Proximity Gradient Algorithm (IIPG)
whereas in our experimental setup, the ADAM optimizer is used. Moreover, we utilize a list
for UNETs without weight sharing to implement learning kernel filters for the regularization
term. This is in contrast with MoDL where weights for the CNN are shared in all unroll
steps. Hammernik et al. (2017)

SSDU is a learning scheme that does not require fully sampled data for network training.
It splits the acquired undersampled k-space indices into two disjoint sets. The DC unit of
the network uses one of the set while the other set is used for evaluating the loss function.
The input images of the network are obtained from the undersampled k-space data and
Coil Sensitivity Maps (CSM). The output image is then converted to k-space to calculate
the loss. Yaman et al. (2020)

A key point to note in the three architectures is how the regularization block is implemented.
SSDU utilizes a ResNet, MoDL uses a CNN and VarNet operates on the UNET.

2 Method

2.1 Setting up MoDL, VarNet and SSDU

For the task of MRI reconstruction using fully sampled k-space data, we will utilize the
following implementation of MoDL and VarNet in Pytorch.

ZhengguoTan (2023) VarNet MoDL PyTorch [Source Code]

https://github.com/ZhengguoTan/VarNet MoDL PyTorch

For SSDU, the implementation is in the Tensorflow framework. Hence, it is necessary to
manage it in a different environment. Alternatively, it is also possible to migrate the Ten-
sorflow code to Pytorch.

byaman14 (2021) SSDU [Source Code]

https://github.com/byaman14/SSDU

After setting up the environment and satisfying the requirements, we can proceed to create
the dataset and train the three architectures.

2.2 fastMRI dataset preparation for MoDL and Varnet

These two models require the ground truth image, coil sensitivity maps and the mask as
the training input. We will be using the fastMRI brain dataset provided by our supervisor
but it can also be downloaded from the following link:

https://fastmri.med.nyu.edu/
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fastMRI provides fully sampled k-space data which is used to obtain the ground truth by
converting it to the image domain via the inverse Fourier transform. The coil sensitiv-
ity maps are then computed using ESPIRiT. For the mask, all results and experiments
described in this paper uses a Poisson disk undersampling mask with a 4x acceleration
rate. However, different mask choices are also acceptable like Cartesian, radial, spiral, etc.
For implementation purposes, the mask is shifted and end slices are removed because they
do not contribute much information during training. Our dataset contains slices from all
contrasts i.e. FLAIR, T1 and T2.

Figure 1: Sample Images, Insignificant End Slices Removed

Figure 2: Sample Dataset
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2.3 MoDL and VarNet Training

The models are trained with identical parameters for fair comparison.

An overview for the training, testing and inference is given below:

Hyperparameters Outcome

Learning Rate = 0.001 Train Score = 28.494

Batch Size = 1 Train Loss = 4.624

Number of Epochs = 20 Test PSNR = 27.282

Number of Unrolls = 10 Test SSIM = 0.784

Table 1: Training and Testing Data for MoDL

Hyperparameters Outcome

Learning Rate = 0.001 Train Score = 38.665

Batch Size = 1 Train Loss = 0.191

Number of Epochs = 20 Test PSNR = 37.844

Number of Unrolls = 10 Test SSIM = 0.936

Table 2: Training and Testing Data for VarNet

Figure 3: Loss and Score Curves for MoDL
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Figure 4: Sample Inference for MoDL

Figure 5: Loss and Score Curves for VarNet
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Figure 6: Sample Inference for VarNet

2.4 fastMRI dataset for SSDU

As stated earlier, SSDU works on undersampled k-space data but fastMRI provides fully
sampled data. Hence, the k-space is subsampled by pointwise multiplication with a mask.
We used the same Poisson disk mask but other masking options are also possible.

Figure 7: Undersampling fastMRI k-space
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Figure 8: Sample Dataset

2.5 SSDU Training

In case of SSDU, the loss curve does not fully converge for training on 20 epochs. Therefore,
for practical purposes, training should be carried out for more number of epochs but we
will continue with only 20 epochs so that the training is comparable to MoDL and VarNet.

Hyperparameters Outcome

Learning Rate = 5e-5 Train Loss = 0.367

Number of Epochs = 20 Test PSNR = 33.029

Number of Unrolls = 10 Test SSIM = 0.564

Table 3: Training and Testing Data for SSDU

Figure 9: Loss Curves for SSDU
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Figure 10: Inside SSDU Training

Figure 11: Sample Inference for SSDU

8



3 Experiments and Results

3.1 Effect of Normalization

Normalization is a key technique used in deep learning that enhances model performance and
stability in the optimization process. It also eliminates the issue of vanishing or exploding
gradients, allowing models to reach optimal solutions more efficiently. In our use case,
normalization can be done either in the k-space or in the image space. The following table
shows how the model convergence is affected by normalization.

Normalization Train Score Loss

No Normalization -18.858 0.000

-1 to 1 1.010 1.243

0 to 1 9.581 0.318

Table 4: Normalization

3.2 Effect of Number of Unrolls

The general trend in all three architectures is that the model performance improves as the
number of network unrolls (k) increases. A comparison between the minimum unrolls i.e.
k=1 and recommended maximum unrolls i.e. k=10 is demonstrated in the following tables.

k=1 k=10

Train Loss 0.575 4.624

Test PSNR 33.650 27.282

Test SSIM 0.836 0.784

Table 5: MoDL Metrics (for 20 Epochs)

For MoDL, the PSNR for k=1 is better than that of k=10 because the models are trained
using identical hyperparameters without fine-tuning. This inconsistency is resolved by ap-
propriately tuning the learning rate.

k=1 k=10

Train Loss 0.205 0.191

Test PSNR 37.332 37.844

Test SSIM 0.931 0.936

Table 6: VarNet Metrics (for 20 Epochs)
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k=1 k=10

Train Loss 0.615 0.367

Test PSNR 32.785 33.030

Test SSIM 0.564 0.564

Table 7: SSDU Metrics (for 20 Epochs)

Figure 12: Inference Results for Different Unrolls
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4 Discussion

As reflected in the experiments, normalization is necessary to ensure convergence in all three
models. We have done normalization in image space for MoDL/VarNet and in k-space for
SSDU. However, there is still a possibility to investigate the results if normalization is
done in k-space. Another aspect to examine is the tuning of hyperparameters for each
architecture. To make results comparable, we performed identical training without any
fine-tuning. MoDL and Varnet gave good results but SSDU struggles to converge to a
proper minimum. Hence, further evaluation could be done by fine-tuning the parameters.
The choice of mask can also affect training. The dataset in our experiments uses a Poisson
disk mask for each image slice. It would be interesting to investigate the outcome if the
dataset consists of slices with different masks.

5 Conclusion

All three models give comparable results in training and inference with a minor increase in
PSNR and SSIM scores as the number of unrolls of the network increases.

An overview of the three architectures is given below:

SSDUVarNetMoDL

HighHighMediumVRAM

GoodBestBetterPSNR

GoodBestBetterSSIM

SlowOkGoodTraining Time

Table 8: Comparison of the Architectures

Overall, SSDU is slow to train but is the obvious choice if only undersampled training data
is available. Both MoDL and VarNet require fully-sampled data to train but differ in hard-
ware requirements and performance. VarNet gives the best scores but requires a GPU with
high memory (¿16GB) to train whereas MoDL can be trained on a GPU with a minimum
10GB VRAM. Hence, if hardware is a limiting factor, one should go more MoDL for a slight
trade-off in inference results.
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