
Computational Imaging Lab

Comparing the performance of VarNet, MoDL, and SSDU in
fastMRI image reconstruction

Author: Yenju Lu

Supervisor: Zhengguo Tan

1 Introduction

This project evaluates three MRI recon-

struction models: VarNet (Variational Net-

work), MoDL (Model-based), and SSDU

(Self-supervised learning via data under-

sampling), to determine their effect using

PSNR and SSIM metrics. VarNet lever-

ages a UNET-based variational approach,

whereas MoDL employs a CNN for model-

based reconstruction that optimizes im-

age consistency from sparse multichannel

data, streamlining the process with end-

to-end training. SSDU stands out with its

self-supervised learning strategy, using a

ResNet-based framework to train on un-

dersampled data, overcoming the need for

fully sampled datasets. By integrating the

physics of MRI, SSDU provides a robust

alternative capable of matching the perfor-

mance of traditional supervised methods,

even in data-limited scenarios. Each model

aims to improve MRI reconstruction quality

and accelerate the imaging process while

tackling the challenges of artifact presence

and the complexity of biological tissue rep-

resentation.

The MoDL framework advances model-

based image recovery by tackling mul-

tichannel, noisy, and sparse data chal-

lenges commonly found in MRI and vari-

ous imaging modalities. This method em-

ploys a forward model to fine-tune the con-

sistency between predicted images and ac-

tual measurements. Addressing this inher-

ently complex issue, MoDL integrates pri-

ors to navigate the recovery process ef-

fectively. Deep convolutional neural net-

works (CNNs) have recently been adapted

for these tasks, demonstrating significant

potential in both direct inversion and noise

reduction. MoDL synergizes model-based

reconstruction with deep learning, alternat-

ing between leveraging CNNs to capture

image redundancies and reinforcing data

consistency. This is particularly effective for

complicated forward models such as mul-

tichannel MRI. Through end-to-end train-

ing, MoDL streamlines the CNN’s complex-

ity, customizing network parameters pre-

cisely for image recovery and consequently

improving performance, which is especially

beneficial when training data is scarce.

VarNet is centered on enhancing MRI

reconstruction by employing deep learning

techniques to accelerate the process. It

addresses the shortcomings of traditional

methods such as Parallel Imaging and

Compressed Sensing, which often strug-

gle with artifacts and the complex rep-
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resentation of biological tissue imagery.

To sidestep the demanding conditions im-

posed by Compressed Sensing, VarNet

adopts learning methods that mirror the in-

terpretative skills of radiologists, who are

adept at identifying patterns amidst arti-

facts. The proposed variational network fo-

cuses on learning the complexities of trans-

forming raw data into coherent images, thus

advancing image quality and strengthening

its relevance in clinical settings.

SSDU confronts MRI’s slow data ac-

quisition bottleneck by leveraging self-

supervised learning, circumventing the

drawbacks of traditional techniques such

as Parallel Imaging and Compressed Sens-

ing, which tend to introduce artifacts and

noise, especially at higher acceleration

rates. This innovative approach stands

in contrast to conventional deep learning

frameworks that rely heavily on large vol-

umes of fully sampled ground-truth data,

often a logistical challenge due to time-

sensitive physiological processes and pa-

tient comfort concerns. SSDU’s algorithm is

designed to learn directly from undersam-

pled data, making the most of limited in-

formation without depending on exhaustive

reference datasets. In practical applications

involving knee and brain scans, SSDU has

proven capable of achieving a level of im-

age quality with fully supervised methods,

establishing a new frontier in the realm of

medical imaging. Its success in maintain-

ing high-quality reconstructions while sig-

nificantly reducing scan time could revolu-

tionize patient experience by shortening the

time spent in the scanner and streamlining

the workflow for radiologists.

2 Theories and Methods

2.1 VarNet: UNET and Gradient De-

scent

It is a Parallel Imaging (PI) -based MRI

reconstruction. It proposes to learn the

parameters of the inverse transform with

UNET combined with a gradient descent

scheme. UNET’s architecture provides a

robust framework for medical image re-

construction, offering detailed feature ex-

traction, precise localization, efficient data

use, and high-quality reconstruction out-

puts. These advantages make it an in-

valuable tool in advancing medical imaging

technologies.

The optimization objective, shown in

Equation [1], minimizes the difference be-

tween the measured undersampled k-

space data b and the k-space representa-

tion of the image Ax, scaled by a regular-

ization parameter λ. Here, A represents

the linear forward sampling operator, em-

bodying the MRI’s data acquisition process.

The term R(x) introduces a regularization

that enforces prior knowledge about the im-

age to stabilize the solution of this ill-posed

problem. Equation [2] describes the iter-

ative update rule in the gradient descent

scheme for image reconstruction. At each

iteration n, the current estimate xn is up-

dated. The variable zn represents the out-
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put of UNET, it is an intermediate variable

that is updated using the gradients derived

from the data consistency and regulariza-

tion terms. This update is modulated by the

step size λ, balancing the trade-off between

convergence speed and stability.

min
x

λ

2
∥Ax− b∥2 +R(x) (1)

xn+1 = xn − zn − λ(AHAxn − AHb) (2)

2.2 MoDL: CNN and Conjugate Gradi-

ent Descent

MoDL employs an iterative algorithm

that alternates between enforcing data con-

sistency and utilizing pre-trained CNN de-

noisers to exploit image redundancies. The

application of CNN denoiser in medical im-

age reconstruction offers a transformative

approach to managing and improving the

quality of medical images, facilitating better

diagnostic accuracy and patient outcomes

with the power of deep learning. It lever-

ages the conjugate gradient algorithm in-

formed by normal equations, with shared

weights across iterations for efficiency. The

network learns the regularization parame-

ter, training to eliminate aliasing and noise

at every step.

The optimization hinges on an objective

function detailed in Equation [3], where A

represents the linear forward sampling op-

erator applied to the sought image x, and b

corresponds to the undersampled k-space

data. The regularization component R(x)

is integral to this process. Equation [4]

describes the reconstruction of the image

x through the conjugate gradient descent

method.

min
x

∥Ax− b∥2 + λ∥x− zn∥2 (3)

xn+1 = (AHA+ λI)−1(AHb+ λzn) (4)

2.3 SSDU: ResNet and Conjugate Gra-

dient Descent

SSDU employs an iterative algorithm

that alternates between enforcing data

consistency and leveraging a pre-trained

ResNet model, distinctively operating with-

out the need for fully sampled reference

data. In medical image reconstruction,

ResNet has been adapted to enhance im-

age quality from under-sampled data, re-

duce artifacts, and improve the sharpness

and clarity of reconstructed images. Its abil-

ity to learn residual mappings has been par-

ticularly effective in iterative reconstruction

algorithms, where ResNet layers can be in-

tegrated to refine predictions at each itera-

tion, gradually improving the reconstruction

quality.

The optimization is driven by an objec-

tive function, depicted in Equation [6], which

utilizes a linear forward sampling operator,

AΩ, and bΩ is the given undersampled k-

space data. During training, the network

harnesses a set of k-space locations de-

fined by

Θ = Ω \ Λ (5)
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within the data consistency units. Con-

versely, the set denoted by Λ is instrumen-

tal in defining the loss function. The re-

constructed image x is obtained through the

conjugate gradient descent method, as for-

mulated in Equation [7]. The loss function,

described in Equation [8], is characterized

by a normalized ℓ1 − ℓ2 loss, which con-

tributes to the effectiveness of the SSDU

model in image reconstruction tasks.

min
x

∥AΩx− bΩ∥2 + λ∥x− zn∥2 (6)

xn+1 = (AH
ΩAΩ + λI)−1(AH

Ω bΩ + λzn) (7)

loss =
1

N

∑
i

L
(
yiΛ, ÂΛ

(
f
(
yiΘ, ÂΘ

)))
(8)

3 Results

The analysis predominantly utilizes a

T2-weighted dataset, assembled from 167

multi-coil brain fastMRI files, each rich in

k-space data spanning various slices and

coil configurations. Integral to this dataset

are elements critical for accurate recon-

struction: keys for the ground truth (Org),

coil sensitivity maps (CSM), a selected coil

number of 16 in the dataset, and Poisson’s

masks. These components were system-

atically divided into training and validation

sets for the VarNet and MoDL models. For

the SSDU approach, a tailored selection in-

volving the CSM, train mask, and loss mask

was employed. This diligent method was

similarly employed in compiling the testing

dataset. The comprehensive dataset com-

prises 2388 slices designated for training,

272 slices for validation, and 368 slices for

testing. The evaluation process was stan-

dardized using a batch size of 1, comple-

mented by a StepLR scheduler, facilitating a

learning rate of 0.01, a step size of 10, and

a gamma value of 0.1, ensuring a consis-

tent and structured assessment framework.

3.1 VarNet: structure evaluations

The evaluation of VarNet focuses on two

primary factors. Initially, it explores the im-

pact of the unrolled gradient descent blocks,

referred to as K. Subsequently, it investi-

gates the configuration of the encoder and

decoder layers within the UNET architec-

ture, designated by N. Since the UNET’s

layers double the output channel size by

two, it can dramatically learn the features of

the images. The outcomes of this analysis,

employing an x8 acceleration mask, are de-

picted in Figure 1, while Figure 2 provides a

visual representation of the VarNet model’s

structure. Notably, a configuration with K

set to 6 and N to 3 yields the highest PSNR

value, highlighting the optimal settings for

enhancing image reconstruction quality in

this context.
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Figure 1: VarNet: K and N values (PSNR), the

model trained with an x8 acceleration mask

Figure 2: VarNet

3.2 MoDL and SSDU: structure evalua-

tions

The assessment of MoDL and SSDU

models delves into two crucial elements.

Initially, it investigates the influence of the

unrolled conjugate gradient descent blocks,

labeled as K. Subsequently, it evaluates

the convolution layers in the CNN denoiser

(MoDL) or the ResNet architecture (SSDU).

The findings of this exploration, utilizing an

x8 acceleration mask, are presented in Fig-

ures 3 and 5, while Figures 4 and 6 offer de-

tailed visualizations of the SSDU and MoDL

structures, respectively.

Figure 3: MoDL: N value (PSNR), the model

trained with an x8 acceleration mask

Figure 4: MoDL

Remarkably, a configuration with K set to

1 and N to 9 achieves the highest PSNR

value for MoDL. Conversely, the ResNet-

based SSDU model demonstrates the effi-

cacy of the unrolled blocks K, with a combi-

nation of K set to 3 and N to 6 reaching a

PSNR value of 34.6 for ResNet(SSDU).

Additionally, the principle of self-

supervised learning inherent in SSDU can

be adaptively applied to the CNN-based

MoDL framework. This adaptation, with K

adjusted to 5 and N maintained at 9, cul-

minates in a PSNR performance of 35.3,

surpassing the original configuration. This
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highlights the flexibility and potential of inte-

grating self-supervised learning techniques

to enhance image reconstruction quality

further.

Figure 5: MoDL,SSDU(MoDL),SSDU(ResNet):

K value (PSNR), the model trained with an x8

acceleration mask

Figure 6: SSDU(ResNet)

3.3 Transformer: structure evaluations

The substitution of traditional UNET or

CNN structures with a Vision Transformer

architecture is evaluated here, as well as

the concept of SSDU is also implemented

into the Transformer. Figure 7 shows the

results of Varnet model with Transformer re-

placement of the UNET. Figure 8 shows the

outcomes of Transformer-based MoDL and

the Transformer-based MoDL with SSDU.

Figure 7: Varnet Transformer: K and N values

(PSNR), the model trained with an x8 accelera-

tion mask

Figure 8: MoDL Transformer and SSDU(MoDL)

Transformer: K and N values (PSNR), the

model trained with an x8 acceleration mask

The proposed Transformer architecture,

crafted to revolutionize MRI image recon-

struction, showcases a complex assem-

bly of modular components and advanced

deep-learning techniques. Central to its de-

sign, the Transformer defines essential pa-

rameters such as the embedding size at

768 to enrich the model’s understanding of

each patch, alongside a strategic allocation

of 12 attention heads to dissect and ana-

lyze image data from multiple perspectives.

It manages a staggering 2112 patches il-

lustrating a deeper segmentation of images

for finer detail capture. The scale factor

same as the patch size, set at 12, mir-

rors this expansion, facilitating a precise
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upscaling process. Embedded within this

architecture, the ”VisionTransformer mod-

ule” leverages these configurations, pro-

cessing patch embeddings augmented with

positional information to preserve spatial

relationships. The ”FeatureMapToImage”

module stands out for its sophisticated ap-

proach to transforming encoded features

back into images, utilizing a series of con-

volutional layers, normalization, and acti-

vation functions to refine the output. Inte-

gral functions like ”change shape” and ”in-

put embeddings” ensure a seamless tran-

sition between image space and embed-

ded patches, optimizing the architecture’s

efficacy. Through its design, incorporating

a notable embedding size of 768, 12 at-

tention heads, and managing an expanded

2112 patches, this architecture enhanced

image quality in the application of Trans-

former models of medical imaging.

3.4 Reconstruction images and tables

This section presents the reconstructed

images from the training phase of four dif-

ferent models: MoDL, VarNet, a ResNet-

based model with SSDU, and MoDL with

SSDU, each under an x8 acceleration

mask, as depicted in Figures 9 and 10.

These images offer a visual comparison of

each model’s capability to reconstruct high-

fidelity medical scans from undersampled

data. Additionally, the variation in image

clarity and detail among the models pro-

vides insights into their respective perfor-

mance and potential clinical applicability.

Figure 9: Training images of MoDL and Varnet,

the model trained with an x8 acceleration mask
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Figure 10: Training images of SSDU(MoDL)

and SSDU(ResNet), the model trained with an

x8 acceleration mask

The comparisons of PSNR and SSIM per-

formance between the various models are

displayed in Figure 11, which generally

shows that the VarNet model possesses the

highest reconstruction capability, followed

by MoDL with SSDU.

Figure 11: PSNR and SSIM Performance com-

parison
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Figure 12: Model’s trainable parameters

The required trainable parameters for each

model are listed in Figure 12, demonstrat-

ing that even the model with the simplest

structure, where both K and N equal one,

has a significantly higher count of trainable

parameters compared to other models.

4 Discussion

The supervised learning model Var-

Net demonstrates superior performance,

achieving PSNR values above 38.0 in

fastMRI image reconstruction, leveraging

the UNET architecture with a manageable

number of trainable parameters. Addi-

tionally, the study explores the integration

of self-supervised learning via data under-

sampling (SSDU) with the UNET structure.

However, simulation results indicate that

the SSDU approach may not be compati-

ble with the UNET structure employed in the

VarNet model.

Conversely, the SSDU methodology

exhibits promising results when paired

with CNN-based, ResNet-based, or

Transformer-based models. This approach,

especially when utilizing weight sharing

across unrolled blocks, leads to a signifi-

cant reduction in the number of trainable

parameters and diminishes the risk of over-

fitting.

As for the Transformer architecture, its

implementation in this study did not result

in improved image reconstruction quality

when replacing the UNET and CNN mod-

els. Despite attempts to optimize through

adjustments of K and N values, no en-

hancement in PSNR was observed. This

lack of improvement could be due to an in-

adequate exploration of the Transformer ar-

chitecture, particularly in terms of patch size

and embedding dimensions. Therefore, a

deeper investigation into these specific as-

pects is warranted to fully exploit the Trans-

former’s potential in the domain of medical

imaging.

5 Conclusion

In conclusion, the investigation into

MRI image reconstruction models—VarNet,

MoDL, and SSDU—reveals distinct out-

comes regarding their performance and

adaptability to different structures such as

UNET, CNN, ResNet, and the Transformer.

The VarNet model, leveraging a UNET-

based approach, demonstrates superior

performance, achieving the highest PSNR

values, which underscores the effective-

ness of its variational network in enhanc-

ing image quality with a reasonable number

of trainable parameters. The SSDU model,

particularly when combined with CNN and
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ResNet architectures, showcases the viabil-

ity of self-supervised learning in scenarios

with limited data, achieving commendable

image reconstruction quality.

However, the introduction of the Trans-

former architecture in place of traditional

UNET and CNN components did not re-

sult in improved image reconstruction qual-

ity. Despite variations in K and N values,

PSNR did not exhibit any enhancement.

This suggests that the Transformer archi-

tecture’s potential is yet to be fully realized,

likely due to an insufficient exploration of

its capabilities, especially in terms of patch

size and embedding dimensions within the

context of this study.

Thus, while VarNet and SSDU (when

integrated with CNN and ResNet) present

promising avenues for advancing MRI im-

age reconstruction, the application of Trans-

former architecture necessitates further ex-

amination. Future research should focus on

refining Transformer configurations, partic-

ularly emphasizing not only patch size and

embedding dimensions but also the dimen-

sion of the feed-forward network, the num-

ber of attention heads, and the dropout rate.

Optimizing these parameters is key to un-

leashing the full potential of Transformers

in enhancing MRI image quality. Such ex-

ploration is crucial for advancing the field of

computational imaging, paving the way for

more precise and efficient medical imaging

technologies.
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