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1 Abstract

The integration of deep learning within Magnetic Resonance Imaging (MRI) recon-

struction has marked a pivotal shift towards achieving accelerated imaging without com-

promising image quality. This experiment explores the evolution of MRI reconstruction

methodologies, focusing on the transition from traditional acceleration techniques to ad-

vanced deep learning models, including Model-Based Deep Learning (MoDL), Variational

Networks (Varnet), and self-supervised learning strategies. By conducting a series of ex-

periments, we demonstrate the practical application and effectiveness of these models

in enhancing MRI reconstruction under accelerated conditions. Our findings highlight the

potential of deep learning in overcoming the limitations of traditional methods, offering

insights into future research directions and the integration of these models into clinical

workflows.

2 Introduction

Magnetic Resonance Imaging (MRI) has established itself as an indispensable tool

in clinical diagnostics, providing high resolution images of the body’s internal structures

without the use of ionizing radiation. The technology operates on the principles of nuclear

magnetic resonance, where radiofrequency pulses are employed in a strong magnetic

field to excite hydrogen atoms in the body. The resultant signal, encapsulated in the spa-

tial frequency domain known as k-space, is then reconstructed into the images used for

diagnostic purposes. However, the traditional MRI process is time-intensive, often requir-

ing patients to remain still for extended periods, which can be challenging and uncom-

fortable. This lengthy acquisition time is also a bottleneck in clinical workflows, limiting

throughput and efficiency.

The need for acceleration in MRI is driven by several factors, including patient com-

fort, the quest for higher resolution, the desire to capture dynamic processes in real-time,

and the imperative to increase throughput in busy clinical settings. The demand for faster

scans has led to the exploration of accelerated imaging techniques, such as parallel imag-

ing and compressed sensing. These methods allow for the acquisition of fewer k-space

samples, reducing scan time, but also introduce new challenges in the reconstruction

phase.

Traditional reconstruction methods struggle with accelerated MRI data due to the in-

complete sampling of k-space. Techniques such as Parallel Imaging utilize multiple re-

ceiver coils to simultaneously collect spatial frequency data, leading to under-sampled
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k-space that must be intelligently reconstructed. Algorithms like SENSE and GRAPPA

have been developed for this purpose, but they require explicit coil sensitivity profiles and

often struggle with noise amplification and artifacts when acceleration factors increase.

Compressed Sensing (CS) offers an alternative approach by exploiting the sparsity of

MR images in some transform domain, allowing for the recovery of images from randomly

under-sampled k-space data. However, CS can be computationally intensive, requiring it-

erative reconstruction that is often slow and not always robust to variations in the sparsity

pattern of different anatomical structures.

Enter deep learning, a subset of machine learning characterized by architectures ca-

pable of learning hierarchically structured data representations, has shown remarkable

potential in addressing the challenges of accelerated MRI. Deep learning algorithms,

especially Convolutional Neural Networks (CNNs), have been successfully applied to

learn the complex mappings required for reconstructing high-fidelity images from under-

sampled data. These models can be trained on vast amounts of data to learn the under-

lying patterns and structures, enabling them to predict and fill in missing k-space informa-

tion effectively.

Deep learning’s potential in MRI reconstruction lies in its ability to capture the nonlin-

ear relationship between the under-sampled k-space and the high-quality reconstructed

images. With sufficient training, these models can outperform traditional methods by pro-

viding faster and more accurate reconstructions. Furthermore, they can generalize to

different types of data and acquisition schemes, offering a flexible solution adaptable to

various clinical scenarios.

However, training these models requires extensive labeled datasets, which are not al-

ways readily available in the medical domain due to privacy concerns and the need for

expert annotations. Self-supervised learning methods within the deep learning framework

have emerged as a solution, utilizing the data itself to learn the reconstruction function

without the need for explicit labels. This has led to the development of innovative architec-

tures like MoDL and Varnet, which incorporate elements of model-based reconstruction

within the deep learning paradigm.

MoDL’s architecture integrates data consistency layers that align with the physics of

MRI, ensuring that the reconstructed images are not only high quality but also adhere

to the acquired data. This approach also benefits from reduced memory usage and im-

proved generalization, as the network learns a global model of the image space rather

than memorizing specific image patterns.

Varnet extends these principles by introducing variational models with CNN-based pri-

ors into the reconstruction process. This integration of learned priors with variational ap-
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proaches effectively balances the fidelity of reconstructed images with the regularization

imposed by CNNs, yielding robust reconstructions even with high acceleration factors.

These advances signify a transformative period in the domain of accelerated MRI.

Deep learning methods are steadily becoming the linchpin in the development of fast and

reliable reconstruction algorithms. Their integration into clinical MRI systems holds the

promise of significantly reduced scan times, enhanced image quality, and the ability to

capture dynamic physiological processes in real-time, ultimately revolutionizing patient

diagnosis and care.

As the medical imaging community continues to embrace deep learning, the fusion

of this technology with existing MRI methods could lead to a new standard of care, one

where rapid, high-resolution imaging is the norm rather than the exception. The potential

for deep learning to streamline MRI protocols, reduce the burden on patients, and provide

radiologists with superior diagnostic tools is an exciting frontier in healthcare, signifying a

leap forward in both the science and art of medical imaging.

3 Backgrounds

3.1 Accelerating Magnetic Resonance Imaging

MRI’s capability to offer detailed insights into the body’s internal structures without

exposure to ionizing radiation has established it as a cornerstone in medical diagnostics.

However, its inherent slow imaging process poses significant challenges, particularly in

terms of patient comfort and clinical efficiency. Traditional MRI procedures necessitate

prolonged periods of patient immobility, leading to potential discomfort and increased

susceptibility to motion artifacts, thereby compromising image quality. The imperative for

acceleration is thus driven by the dual objectives of enhancing patient experience and

optimizing clinical workflow.

3.2 Traditional Acceleration Techniques and Their Limitations

To mitigate these issues, acceleration techniques such as Parallel Imaging and CS

have been developed. PI techniques, including SENSE and GRAPPA, utilize spatial in-

formation from multiple receiver coils to reconstruct images from under-sampled data.

Despite their effectiveness in reducing scan times, these methods are often constrained

by the requirement for precise coil sensitivity profiles and tend to introduce noise and

reconstruction artifacts, especially at higher acceleration factors. On the other hand, CS

leverages the sparsity of MR images in a transformed domain to reconstruct images from
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randomly under-sampled k-space data. While promising, CS’s dependence on iterative

reconstruction makes it computationally intensive and slow, challenging its practical ap-

plication in a clinical setting.

3.3 Deep Learning in MRI Reconstruction

The advent of deep learning has introduced a novel approach to addressing the chal-

lenges of accelerated MRI. CNNs and other deep learning architectures have shown re-

markable success in learning complex mappings required for reconstructing high-fidelity

images from under-sampled data. Unlike traditional methods, deep learning models can

automatically learn optimal representations and patterns from large datasets, enabling ef-

ficient and accurate reconstructions. This experiment focuses on the integration of MoDL,

Varnet, and self-supervised learning strategies into MRI reconstruction, highlighting their

potential to revolutionize the field by overcoming the limitations of previous acceleration

techniques.

4 Deep Learning Models for MRI Reconstruction

4.1 Introduction to Varnet: A variational network Deep Learning Ar-

chitecture

The endeavor to expedite MRI, while maintaining, or even improving, the fidelity of

the reconstructed images, has led to the exploration of deep learning methodologies. A

prominent example of such an innovation is the Varnet introduced by Hammernik et al. in

their 2017 study on the reconstruction of accelerated MRI data .

A Varnet embodies a sophisticated blend of variational models with the transformative

capabilities of deep learning. This synergy aims to resolve the conundrum of fast and

high-quality reconstruction from undersampled multi-coil MRI data. The Varnet proposed

by Hammernik et al. is a deep learning architecture that unifies the mathematical rigor of

variational models with the flexible and powerful learning ability of neural networks.

The Varnet framework capitalizes on a generalized compressed sensing reconstruc-

tion, formulated as a variational model embedded in an unrolled gradient descent scheme.

In essence, Varnet are designed to learn from a variety of cases and are subsequently

able to apply this learned knowledge to previously unseen data, streamlining the recon-

struction process.

A core component of the Varnet is its reliance on variational models which serve as

a theoretical underpinning for MRI reconstruction. Variational models are mathematically
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grounded techniques used to estimate image data from observed signals. The Varnet

takes these models a step further by incorporating a gradient descent approach, where

the image is iteratively refined with learned parameters, including filter kernels and acti-

vation functions, along with data term weights, all optimized during an extensive offline

training process .

One of the key innovations of Hammernik et al.’s work is the training procedure that

the Varnet undergoes. Using a collection of image slices from different patients, the

network learns a set of parameters that can effectively map undersampled k-space data

to a fully reconstructed image. This training process is akin to teaching the network the

language of MRI data, where the final parameters encapsulate the nuances of image

features and artifacts unique to MRI scans. Through the training, the Varnet becomes

adept at predicting the complete image data, even when only a fraction of the usual k-

space data is provided .

The Varnet’s reconstruction performance is quantified against a ”gold standard” refer-

ence image, which is created from fully sampled raw data. The training and subsequent

application of the Varnet are focused on musculoskeletal imaging, aiming to provide ro-

bust reconstructions under various acceleration factors and sampling patterns. The net-

work’s ability to maintain the natural appearance of MR images and preserve pathologies

not included in the training dataset has been verified through retrospective and prospec-

tive undersampled clinical patient data .

Moreover, the variational approach of the Varnet ensures that the reconstructed im-

ages adhere to the raw data, making this method especially reliable. The training phase

involves comparing the current reconstruction of the Varnet to an artifact-free reference

using a similarity measure, with the error propagated back to refine the Varnet parameters

. The filters and activation functions within the Varnet adapt to represent complex image

content effectively, capturing the intricate structures present within biological tissues that

simpler sparsifying transforms may not adequately represent .

The Varnet architecture exhibits a notable improvement in reconstruction quality com-

pared to conventional methods. This advancement is evidenced by the Varnet’s superior

performance in terms of mean squared error (MSE), normalized root mean squared error

(NRMSE), and structural similarity (SSIM) across various test scenarios. The Varnet out-

performs standard reconstruction algorithms like CG SENSE and PI-CS TGV, especially

when dealing with regular sampling and higher acceleration factors .

The pioneering work of Hammernik et al. signifies a leap in MRI reconstruction, transi-

tioning from routine iterative reconstruction processes to a learning-based approach that

considerably shortens the reconstruction time to approximately 193 ms on a single graph-
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ics card. The integration of this method into clinical workflows heralds a new chapter in

MRI, where the reconstruction is no longer a computational bottleneck, but rather a rapid,

accurate, and robust process tailored for the clinical setting .

This work demonstrates the potential of deep learning to not just supplement existing

imaging techniques but to redefine them, making rapid, high-quality MRI a more acces-

sible reality in clinical practice. The implications of such advancements extend beyond

technical feats, pointing towards an era of patient-centered imaging, where diagnostics

are not only rapid and accurate but also increasingly personalized. [1]

4.2 Introduction to MoDL: MoDL Architecture

MRI reconstruction from undersampled k-space data is a complex inverse problem

that has gained a novel solution through the MoDL architecture developed by Aggarwal

et al. This deep learning framework tackles the challenge of reconstructing high-quality

images from limited MRI data, offering a powerful tool for accelerating the MRI process

while maintaining image integrity.

At the heart of MoDL is the integration of model-based reconstruction with deep learn-

ing, particularly the use of CNNs. The MoDL architecture is distinctive in that it incorpo-

rates a CNN-based regularization prior within a conventional model-based reconstruction

strategy, which allows the forward model to be explicitly taken into account during the

image reconstruction process. This results in a smaller network that requires fewer pa-

rameters compared to direct inversion methods, thereby reducing the demand for training

data and time.

The MoDL framework hinges on an iterative reconstruction algorithm. By embedding

the forward model, it enforces data consistency at every step. This is pivotal for maintain-

ing fidelity to the actual acquired data and avoiding the artifacts typically introduced by un-

dersampling. The consistency between the reconstructed images and the acquired data

is ensured using numerical optimization blocks like the conjugate gradient (CG) algorithm

within the network. This approach promotes faster convergence per iteration compared

to methods relying solely on gradient descent steps for data consistency enforcement.

The architecture consists of a denoising block, followed by a data consistency layer,

with the two alternately applied in an unrolled iterative framework. This unrolling effec-

tively creates a deep linear CNN whose weights are shared across different iterations,

significantly lowering the number of parameters and, thus, the network’s complexity. The

recursive nature of the framework also implies that more iterations can be performed

without increasing the degrees of freedom, reducing the risk of overfitting and making the
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network robust, especially when training data is limited.

An interesting facet of MoDL is the use of a two-step training approach that com-

mences with training a model for a single iteration, which considerably speeds up the pro-

cess. After the initial single iteration model is trained, its weights are employed to initialize

the unrolled network, ensuring consistency across iterations. This strategy has proven to

be more efficient and reliable than initializing the full network with random weights .

The MoDL framework is also adaptable to different acquisition settings due to training

involving various sampling patterns, enhancing the network’s robustness to changes in

acquisition parameters like the undersampling ratio and noise levels. By presenting the

network with diverse sampling patterns during training, the network becomes less sen-

sitive to changes in the acquisition parameters, thereby negating the need for training

multiple large networks for each specific clinical setting.

In summary, MoDL by Aggarwal et al. showcases the synergy between the rigor of

model-based MRI reconstruction and the adaptability of deep learning. It opens up a

promising avenue for designing sophisticated architectures capable of tackling a wide

array of inverse problems. The novel integration of optimization algorithms within the net-

work layers makes MoDL a versatile and powerful tool for the future of medical imaging,

particularly for accelerating MRI reconstruction without compromising image quality. The

potential of MoDL to operate effectively in the clinical environment could revolutionize

diagnostic imaging, leading to more patient-friendly and efficient MRI scans. [2]

4.3 Self-supervised Physics-guided Models

In 2020, Yaman et al. introduced a groundbreaking approach to MRI reconstruction by

employing self-supervised learning within physics-guided neural networks. This method

signified a paradigm shift, especially in scenarios where obtaining fully sampled reference

data was impractical due to time constraints, physiological motion, or the rapid decay of

the MRI signal. The challenges in collecting such comprehensive datasets for supervised

learning necessitated the exploration of alternative training strategies, which culminated

in the self-supervised learning technique developed by Yaman et al. .

The foundation of this method lies in partitioning the acquired k-space data into two

disjoint subsets. One subset is utilized for enforcing data consistency within the unrolled

network, a framework where an iterative algorithm is ’unrolled’ into a sequence of opera-

tions mimicking the steps of traditional optimization algorithms. The second subset forms

the basis for defining the training loss. This bifurcation allows for the network’s end-to-

end training using only the acquired measurements, thus eliminating the dependency on
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a fully sampled dataset .

The unrolled network’s architecture, informed by the principles of ResNet, includes

multiple residual blocks composed of convolution layers. This design facilitates the flow

of information and gradient through the network during training, making the process more

efficient and stable. The conjugate gradient method, used within the data consistency

units of the network, provides a solution to sub-problems typically found in compressed

sensing methods but is now repurposed within a deep learning context .

The key innovation of Yaman et al.’s approach is in how it reimagines the training

process. Traditionally, deep learning methods for MRI reconstruction are supervised and

rely on large databases of fully sampled data to provide ground truth for loss calculation

during training. This model, however, employs self-supervision via data undersampling

(SSDU), where the network learns to reconstruct by comparing its output to a portion of

the acquired data designated for the loss calculation. This SSDU technique is particularly

adept at learning to reconstruct at high acceleration rates, a task that often challenges

traditional reconstruction methods like parallel imaging and compressed sensing .

The proposed self-supervised model has demonstrated a performance comparable

to supervised models, despite the absence of fully sampled data. In their study, the

reconstructions obtained through self-supervision closely matched those from supervised

learning while outperforming traditional methods across several metrics. Their work has

significant implications for clinical practices, suggesting that it’s possible to train robust,

physics-guided deep learning MRI reconstruction networks without the need for extensive,

fully sampled datasets .

In conclusion, the work of Yaman et al. represents a substantial advance in MRI recon-

struction. By circumventing the limitations of supervised learning, they have made strides

toward more practical and efficient imaging techniques. This self-supervised learning

framework could potentially be integrated into various clinical protocols, facilitating the

use of deep learning in MRI reconstruction without the stringent requirements for training

data that have previously been a major hurdle. [3]

5 Contributions and Findings

5.1 Variational Networks

In the landscape of MRI reconstruction, the advent of the Varnet by Hammernik et

al. (2017) stands out as a model that elegantly combines the mathematical structure of

variational models with the adaptive power of deep learning. This model showcases the
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ability to enable fast and high-quality reconstruction of clinical accelerated multi-coil MRI

data, a feat that has significant implications for clinical workflow integration.

5.1.1 Model Architecture and Training

The Varnet is constructed upon a generalized compressed sensing reconstruction

cast as a variational model, incorporating a learned prior represented by filter kernels and

activation functions. This architecture is embedded within a gradient descent framework

where all model parameters are optimized through an offline training procedure. The

training is guided by a loss function, typically MSE, to measure similarity between the

Varnet’s output and an artifact-free reference image. What distinguishes Varnet’s training

is the direct usage of raw k-space data and precomputed coil sensitivity maps from the

fully sampled k-space center, using these components as inputs to train the network. The

architecture consists of T gradient descent steps, each fine-tuning the parameters of the

Varnet towards the optimization of the image reconstruction task.

The innovation extends to the training setup, where the goal is to find an optimal set of

parameters that minimize the loss function over a set of images. This set consists of net-

work parameters including filter kernels, activation functions, and data term weights, all of

which are fine-tuned during the training process. Coil sensitivity maps, crucial for accu-

rate reconstruction, are precomputed from a central k-space block and compared against

a gold standard reference image, which is a coil-sensitivity combined fully sampled re-

construction. The training process itself is a notable deviation from traditional methods,

involving an Inertial Incremental Proximal Gradient (IIPG) optimizer for efficient handling

of the non-convex problem, which is supported by stochastic gradient computation via

backpropagation.

5.1.2 Performance and Efficiency

The Varnet demonstrates a marked improvement in reconstructing accelerated MRI

data. The architecture’s ability to outperform standard reconstruction algorithms is evi-

denced through quantitative error measures such as MSE, normalized root mean squared

error (NRMSE), and structural similarity index (SSIM). The network’s superiority is further

verified by a clinical reader study, where it showcased better performance for regular sam-

pling at an acceleration factor of 4. This validates the Varnet’s capability to preserve the

natural appearance of MR images as well as pathologies not included in the training data

set.

In terms of computational performance, the Varnet shows a significant reduction in re-
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construction time, taking approximately 193 ms on a single graphics card. This efficiency,

coupled with the absence of parameter tuning post-training, positions the Varnet as a ro-

bust solution that can be easily integrated into clinical workflows. The model is designed

to accommodate various sampling patterns, acceleration factors, and sequences, which

speaks to its adaptability and potential to handle a broad range of clinical scenarios.

In conclusion, the Varnet represents a critical step forward in MRI reconstruction, ex-

emplifying the potential of integrating deep learning with traditional variational methods.

The model’s training procedure and parameter optimization techniques underpin its effi-

cient and adaptable nature, promising a new era in clinical imaging where reconstruction

is no longer a time-consuming obstacle but a rapid and reliable process. Hammernik et

al.’s work elucidates a future of MRI where accelerated, high-quality image reconstruction

is seamlessly incorporated into routine clinical practice, enhancing the speed and quality

of patient care.

5.2 MoDL Architecture

The MoDL architecture, as introduced by Aggarwal et al., stands as a significant ad-

vancement in the realm of MRI reconstruction, merging the strengths of model-based

imaging science with the adaptive capabilities of deep learning. This hybrid approach

aims to resolve the longstanding challenge of reconstructing high-quality images from

undersampled MRI data, leveraging the physics of the imaging process to inform and

guide the learning process.

5.2.1 Integration of Model-based and Deep Learning Approaches

MoDL is distinctive in its integration of a CNN-based regularization prior within a tra-

ditional model-based reconstruction framework. The architecture explicitly accounts for

the MRI forward model, enabling it to work with fewer parameters than direct inversion

methods. This integration not only reduces the demand for extensive training data and

shortens training durations but also tailors the CNN weights to the specificities of the

forward model, enhancing performance compared to strategies relying on pre-trained de-

noisers.

The core of the MoDL framework is an iterative algorithm where a CNN-based denois-

ing block is alternated with a data consistency layer. This setup mirrors traditional iterative

reconstruction methods but benefits from the adaptive learning capabilities of CNNs. Im-

portantly, the MoDL architecture uses weight sharing across iterations, allowing for the

performance of additional iterations without increasing the model’s complexity. This ap-
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proach minimizes the risk of overfitting, a crucial advantage in medical imaging where the

availability of training data is often limited.

5.2.2 Benefits in Terms of Performance and Adaptability

One of the standout benefits of the MoDL approach is its performance, demonstrating

improved outcomes over contemporary state-of-the-art methods despite having a signif-

icantly smaller number of trainable parameters. This efficiency stems from the model’s

ability to decouple the number of iterations from network complexity, thus demanding less

training data and reducing the risk of overfitting. Furthermore, the MoDL framework is

characterized by its reduced sensitivity to various acquisition parameters, such as the un-

dersampling ratio and noise level, eliminating the need for multiple large networks tailored

to each acquisition setting.

Additionally, the inclusion of the CG algorithm within the network layers as a numerical

optimization block marks a novel strategy that enables faster convergence per iteration.

This approach not only enforces data consistency more effectively but also allows the

MoDL framework to handle complex forward models, such as those encountered in multi-

channel MRI where an analytical inverse of the normal operator may not exist. This

versatility facilitates the easy incorporation of additional image priors, further enhancing

the adaptability of the framework to a broad range of inverse problems.

In conclusion, the MoDL framework represents a groundbreaking approach to MRI

reconstruction, providing a robust, efficient, and adaptable solution that leverages the

best of both model-based and deep learning methodologies. By combining the rigorous

physics-based modeling of MRI data acquisition with the flexible, data-driven power of

deep learning, the MoDL architecture offers a promising direction for future developments

in medical imaging technology.

5.3 Self-supervised Physics-guided Models

The pioneering work by Yaman et al. (2020) presents a self-supervised learning ap-

proach that fundamentally challenges and extends the capabilities of deep learning for

MRI reconstruction, especially in settings where fully sampled reference data is difficult

to acquire. This research delineates a novel pathway for training deep learning models in

a self-supervised manner using physics-guided neural networks without reliance on fully

sampled data sets.
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5.3.1 Explanation of Self-supervision and Physics-guidance

Yaman et al. employed a novel strategy termed SSSDU, wherein the available mea-

surements from MRI data are partitioned into two disjoint sets. One set is used within

the network’s data consistency (DC) units, while the other defines the loss for training the

network. This methodology allows the network to be trained and evaluated using only

the acquired measurements, forgoing the need for a fully sampled ground-truth dataset,

which is typically required in supervised learning paradigms.

Physics-guidance is rooted in the neural network’s architecture, which is informed by

the physical process of MRI acquisition. This involves implementing the DC using conju-

gate gradient methods, which are adept at solving the subproblems commonly encoun-

tered in compressed sensing techniques but are now adapted for a deep learning context.

The architecture’s resilience is further strengthened by the ResNet-based CNN structure,

which promotes effective information flow during training and has shown success in other

regression problems.

5.3.2 Comparison with Purely Data-driven Approaches

Purely data-driven approaches in the context of MRI reconstruction, which typically

utilize image-to-image domain mapping, can often suffer from noise amplifications and

other artifacts when not all available data are used judiciously. Yaman et al.’s method

differentiates itself by not only using all available k-space data for training but also by

learning to partition and utilize this data effectively. As a result, the SSDU method signif-

icantly suppresses noise and mitigates the introduction of artifacts, thereby achieving a

higher reconstruction quality compared to conventional data-driven methods.

The self-supervised learning approach introduced by Yaman et al. has been shown to

perform comparably with supervised learning methods while requiring only undersampled

data for training. The research illustrated that SSDU approaches could achieve similar, if

not superior, results in reconstructing high-quality MRI images when compared to conven-

tional compressed-sensing and parallel imaging methods. This finding is substantiated by

quantitative metrics and a clinical reader study, where the SSDU approach demonstrated

improved visual reconstruction quality over these traditional methods.

The application of SSDU to knee MRI sequences at four-fold acceleration revealed

that both supervised and self-supervised DL-MRI methods outperform CG-SENSE and

achieve comparable quantitative performance. This was further demonstrated in prospec-

tively accelerated brain MRI, where the self-supervised approach matched and, in some

cases, exceeded the image quality of CG-SENSE at acquisition rates even when retro-
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spectively accelerated further.

In conclusion, the work of Yaman et al. is a testament to the potential of self-supervised

learning approaches in medical imaging reconstruction. It establishes a new frontier

where the necessity for fully sampled data, which can be a limiting factor for the appli-

cation of deep learning models in clinical settings, is elegantly circumvented. This self-

supervised, physics-guided method showcases not only a comparable performance to

supervised methods but also an enhanced adaptability to the practical constraints of MRI

data acquisition. The findings from Yaman et al. underscore the viability of this innovative

approach, indicating a promising direction for future research and clinical application in

the field of medical imaging.

6 Results and Analysis

6.1 Dataset Construction and Supervised Learning Exploration

The foundation of any deep learning-based reconstruction method lies in the con-

struction of a robust dataset. Our experiment commenced with the meticulous assembly

of datasets comprising ground truth images, sensitivity maps, 4x acceleration masks, and

undersampled images.

Figure 1: From left to right: (a) High-fidelity ground truth image of an MRI scan. (b) Coil Sensitivity

Map (CSM). (c) Cartesian sampling mask. (d) Zero-filled MRI image reconstruction.

This initial step was crucial for the success of subsequent supervised learning exper-

iments involving MoDL and Varnet frameworks under Cartesian masks at a 4x accelera-

tion. Both frameworks demonstrated significant prowess in MRI reconstruction, highlight-

ing the potential of supervised deep learning approaches in overcoming the challenges

posed by accelerated imaging techniques. These findings are consistent with the litera-

ture, emphasizing the importance of a well-constructed dataset in training deep learning
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Figure 2: From left to right: (a) Fluid-attenuated inversion recovery (FLAIR) MRI image highlight-

ing the brain’s lesion areas. (b) T1-weighted MRI image providing good anatomical contrast of

brain tissues. (c) T2-weighted MRI image emphasizing the brain’s moisture content and potential

pathological changes.

models for high-fidelity MRI reconstructions.

6.2 Leveraging Self-supervised Learning for MRI Reconstruction

Building upon the foundation of supervised learning, we ventured into the realm of

self-supervised learning strategies, particularly focusing on the SSDU method inspired by

Yaman Burhaneddin et al.’s seminal work in 2020. This innovative approach eliminates the

need for fully sampled reference data, addressing a significant bottleneck in the clinical

application of deep learning models—the requirement for extensive labeled datasets.

A key aspect of our exploration was the optimization of the Gaussian selection method,

a technique pivotal for the SSDU’s performance. By transitioning our Gaussian selection

method from NumPy to PyTorch, we harnessed the power of GPU acceleration, which

was instrumental in improving the computational efficiency and scalability of our mod-

els. This optimization enabled more effective selection of k-space samples according

to a Gaussian distribution, significantly enhancing the model’s ability to reconstruct MRI

images with high fidelity.
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Figure 3: MRI brain scans demonstrating the MoDL reconstruction method with a Cartesian

mask at 4x acceleration. Top row: from left to right, the ”Ground Truth” image, showing the original

and reconstructed scans. Bottom row: Zoomed-in views of the same scans, providing detailed

comparison between the ground truth and reconstructed images. With PSNR: 28.5545; SSIM:

0.7749.

6.3 Computational Enhancement through PyTorch

The transition from Numpy to PyTorch for implementing the Gaussian selection method

marked a turning point in our experimental approach. This optimization facilitated batch

processing of data and leveraged GPU acceleration, yielding a substantial reduction in

computation time. The PyTorch implementation improved the overall performance of our

MRI reconstruction models, particularly the SSDU, enabling it to adapt more effectively to

different undersampling schemes while preserving image quality.

6.4 Practical Application Extensions and Future Directions

The practical applicability of these models was further demonstrated through their

performance on T1 and T2 weighted images, with Varnet achieving remarkable SSIMs

and PSNRs. Additionally, the enhanced SSDU model showcased its potential for high-

quality MRI reconstruction without the necessity for extensive labeled datasets. These

advancements promise to reduce MRI scan times significantly, improving patient comfort

without sacrificing diagnostic accuracy.

The journey from dataset construction through supervised learning to the pioneering

application of self-supervised learning strategies, culminating in practical applications, un-
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Figure 4: MRI brain scans reconstructed using the Varnet method with a Cartesian mask at 4x

acceleration. The top row, from left to right, shows the ”Ground Truth” image, depicting the orig-

inal and Varnet-reconstructed scans. The bottom row displays zoomed-in views of the same im-

ages, highlighting the detail preservation and image quality achieved by the Varnet reconstruction

method. With PSNR: 33.7982; SSIM: 0.8676.

derscores the transformative potential of deep learning in MRI reconstruction. As we look

to the future, refining these models to enhance their computational efficiency, adaptability,

and transparency will be paramount. The ongoing evolution of deep learning methodolo-

gies holds the promise of revolutionizing diagnostic imaging, making accelerated MRI the

norm and unlocking new possibilities in patient care.

In conclusion, this detailed exploration, supported by experimental results and the

strategic enhancement of computational techniques, illustrates the profound impact of

deep learning technologies on MRI reconstruction. The collective efforts in research,

development, and clinical validation within the medical imaging community are poised to

lead to groundbreaking advancements in healthcare diagnostics, propelling the field into

a new era of efficiency and precision.

7 Comparative Analysis

The evolution of MRI reconstruction has been notably advanced through the devel-

opment and refinement of deep learning models, specifically through the integration of

model-based and self-supervised learning approaches. This section delves into a com-

parative analysis of three pioneering approaches: the Varnet introduced by Hammernik et
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Figure 5: Visualization of Gaussian Mask application in MRI k-space data.

al., the MoDL architecture proposed by Aggarwal et al., and the self-supervised physics-

guided models by Yaman et al. Each of these methods offers unique insights and solu-

tions to the challenges inherent in accelerated MRI reconstruction.

7.1 Direct Comparison of Results

In terms of performance, the Varnet demonstrates remarkable efficiency in recon-

structing images from highly undersampled data, showcasing superior image quality with

higher PSNR values compared to traditional parallel imaging strategies. The MoDL ar-

chitecture, through its iterative approach and weight-sharing mechanism, showcases a

significant improvement in reconstruction quality, as evident from the quantitative metrics

like PSNR across various acceleration factors. Yaman et al.’s self-supervised approach,

on the other hand, manages to achieve comparable reconstruction quality to supervised

models despite the absence of fully sampled ground truth in its training regimen, a feat

that underscores the potential of self-supervised learning in clinical applications.

7.2 Strengths and Weaknesses

The Varnet’s strength lies in its ability to effectively leverage learned priors, making it

adept at handling structured undersampling artifacts. However, its reliance on extensive

training data and computational resources can be a limiting factor. The MoDL architecture
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Figure 6: Evaluation of FLAIR MRI reconstructions with quantitative metrics with SSDU. Top row,

from left to right: ”Ground Truth” image, comparing the original with the reconstructed images.

Bottom row: Zoomed-in views of the corresponding images above, providing a detailed examina-

tion of the reconstruction quality. These metrics suggest a good reconstruction fidelity relative to

the ground truth. With SSIM: 0.7916; PSNR: 25.0465.

stands out for its adaptability and efficiency, attributable to its model-based integration and

the innovative use of shared weights across iterations, which not only reduces the com-

putational load but also minimizes the risk of overfitting. The self-supervised approach

by Yaman et al. is particularly noteworthy for its ability to operate without fully sampled

data, offering a viable solution to one of the most pressing constraints in MRI reconstruc-

tion. Nevertheless, the quality of reconstruction can be contingent upon the choice of

subsampling patterns, which may impact the model’s versatility.

7.3 Training Data Requirements and Computational Efficiency

Varnet and MoDL both exhibit a critical need for substantial training datasets to op-

timize their performance, a common trait among deep learning models that can be a

challenge in medical imaging due to the limited availability of such datasets. The MoDL

framework attempts to mitigate this through its architecture that requires fewer parameters

and by utilizing data augmentation strategies, thereby enhancing its training efficiency. In

contrast, Yaman et al.’s self-supervised model significantly lowers the barrier to entry re-

garding training data requirements, leveraging available undersampled data effectively for

model training. This innovation not only reduces the necessity for large datasets but also
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Figure 7: Application of the Varnet network trained on FLAIR MRI data to T1-weighted MRI scans,

achieving SSIM: 0.8826 and PSNR: 34.8391. Providing a clear visualization of the detail retention

and accuracy of the Varnet network when applied to different MRI modalities.

demonstrates a commendable level of computational efficiency, making it a promising

approach for real-world applications.

In summary, while Varnet and MoDL exhibit profound capabilities in delivering high-

quality reconstructions, their reliance on substantial training data and computational re-

sources presents practical challenges. Conversely, the self-supervised model by Yaman

et al. provides a novel pathway that alleviates the dependence on extensive datasets,

offering a more feasible solution for accelerating MRI reconstruction. Each model brings

unique strengths to the table, from Varnet’s proficiency with learned priors, MoDL’s effi-

ciency and adaptability, to the self-supervised model’s groundbreaking approach to train-

ing data requirements. The ongoing development and refinement of these models con-

tinue to push the boundaries of what is achievable in the field of MRI reconstruction,

paving the way for faster, more accurate diagnostic imaging.

8 Future Directions

The domain of MRI reconstruction has witnessed remarkable advancements due to

the infusion of deep learning techniques. Looking forward, the potential for further en-

hancements in deep learning models for MRI reconstruction is substantial. The current

landscape is characterized by sophisticated models such as Varnet, MoDL, and self-

supervised learning approaches, each contributing novel methodologies to overcome the
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Figure 8: Application of the Varnet network trained on the FLAIR dataset to T2-weighted MRI

scans, with SSIM: 0.8927 and PSNR: 33.5731. Demonstrating the generalizability of the Varnet

network to T2-weighted images. The bottom row provides enlarged views of the images above,

underlining the reconstruction detail and suggesting robustness of the network across different

MRI sequences as evidenced by the high SSIM and PSNR scores.

constraints of accelerated MRI.

8.1 Potential Improvements in Deep Learning Models for MRI Re-

construction

Refinement in architecture design remains a primary avenue for future improvements.

The adaptability and generalization of models can be enhanced by developing architec-

tures that are less reliant on extensive, varied training datasets, which are challenging to

procure in the medical imaging field. Techniques like transfer learning, where a model

trained on one task is adapted for another, could prove beneficial in leveraging existing

datasets more efficiently. Additionally, exploring architectures that can incorporate multi-

modal data, such as combining MRI with other imaging modalities, could lead to more

robust and comprehensive models for reconstruction.

Another improvement could focus on reducing the computational complexity and in-

ference time of these models, making them more practical for real-time clinical use. This

could involve the creation of more efficient network designs that maintain or improve re-

construction quality without extensive computational demands. Techniques from network

pruning and quantization, which simplify and compress deep learning models without a
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Figure 9: Transferability of the SSDU network from FLAIR to T1-weighted MRI data, indicated by

SSIM: 0.7849 and PSNR: 28.8745. The image Revealing the adaptability of the SSDU network to

the T1 modality. The bottom row provides magnified views of the MRI scans, illustrating the detail

achieved in the reconstructions compared to the ground truth.

significant drop in performance, may also become pivotal.

8.2 Exploration of Unsolved Challenges and the Next Steps in Re-

search

Despite the successes, several challenges persist. One of the unsolved challenges is

the generalization of deep learning models to handle a wide variety of pathological con-

ditions. Most deep learning models are trained on datasets that may not encompass the

full spectrum of clinical scenarios. Developing models robust to these variations is cru-

cial for clinical reliability. Moreover, MRI reconstruction algorithms must adapt to different

acquisition parameters and hardware, including variations in magnetic field strengths and

coil configurations.

Addressing the ’black-box’ nature of deep learning is another frontier. Interpretability

and explainability of these models are essential, especially in the medical field, to gain

trust from clinicians and to meet regulatory requirements. Efforts to make models more

transparent and to understand their decision-making processes will be important.
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Figure 10: Assessment of the SSDU network’s performance on T2-weighted MRI scans after

training on the FLAIR dataset, as indicated by an SSIM of 0.7952 and PSNR of 27.6874. Demon-

strating the model’s effectiveness on T2 sequences. Below, the zoomed-in sections of the ground

truth and reconstructed images detail the texture and structure fidelity preserved by the network.

8.3 Integration of These Models into Clinical Workflows

The integration of deep learning models into clinical workflows presents its own set of

challenges. Clinical deployment requires not just high performance but also robustness,

reliability, and ease of use. Models must comply with stringent regulatory standards and

seamlessly fit into existing IT infrastructures. Moreover, they should be intuitive for clini-

cal practitioners to use, necessitating user-friendly interfaces that do not disrupt existing

workflow patterns.

The acceptance of automated tools in clinical practice hinges on demonstrating clear

benefits, including improved diagnostic accuracy, faster turnaround times, and potentially

lower costs. Ongoing clinical trials and outcome studies will be pivotal in evaluating the

effectiveness of these models in a real-world setting.

For widespread clinical adoption, these models must also address the varying levels

of expertise across different healthcare settings. Building systems that can be fine-tuned

and adapted to local requirements will be crucial for their success.

In conclusion, the future directions for MRI reconstruction are poised to not only con-

page 23 of max. 26



tinue the trajectory of technological innovation but also to address the practical aspects

of deployment in clinical environments. The next wave of research must focus on building

upon the current foundations, ensuring that deep learning models are not only advanced

in their capabilities but also pragmatic for everyday clinical use, adhering to the highest

standards of patient care and clinical practice.

9 Conclusion

As we draw to a close on the discussion of deep learning models for accelerated

MRI reconstruction, it’s clear that the emergence of techniques like Variational Networks,

MoDL, and self-supervised learning represent more than mere incremental advance-

ments; they signify a quantum leap in the methodology of medical imaging.

The impact of deep learning on accelerated MRI reconstruction has been profound.

Hammernik et al.’s Varnet, for instance, has effectively integrated the mathematical struc-

ture of variational models with the adaptability of deep learning, thus enabling fast and

high-quality reconstruction from undersampled data. Similarly, the MoDL approach by Ag-

garwal et al. has brought a novel integration of model-based reconstruction techniques

and CNNs, leading to a network that is not only efficient but robust against variations in

imaging parameters.. Meanwhile, the work by Yaman et al. on self-supervised learning

using physics-guided neural networks has pushed the boundaries further, demonstrating

that high-quality reconstruction is achievable even in the absence of fully sampled ground

truth data.

Each model carries forward the promise of making accelerated MRI a common reality

in clinical settings. They do this by leveraging the intricacies of the MRI data acquisition

process, providing a richer, more detailed recovery of images from sparsely sampled data,

and enabling a significant reduction in scan time without compromising the diagnostic

quality of the images.

In considering the evolution of MRI reconstruction methodologies, it is evident that the

integration of deep learning approaches has catalyzed a shift from traditional, iterative

techniques to more sophisticated, data-driven strategies. This shift is not merely techni-

cal; it holds the potential to enhance patient comfort, streamline clinical workflows, and

possibly unlock new diagnostic capabilities by enabling the capture of dynamic physiolog-

ical processes in real-time.

The transition from academic research to clinical application is nontrivial, involving

stringent regulatory approval, seamless integration into existing healthcare systems, and

acceptance by medical professionals. Yet, the trajectory of current research suggests that
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these hurdles are not insurmountable but are indeed the next milestones on the path of

innovation in medical imaging.

In conclusion, the deep learning models for MRI reconstruction experimented herein

present exciting prospects for the future of medical imaging. The journey of MRI recon-

struction methodologies from their nascent stages to the sophisticated algorithms of today

is a testament to the relentless pursuit of excellence in the field. These models stand as

a beacon for future research, beckoning towards an era where accelerated MRI becomes

the standard, driven by the ever-evolving landscape of deep learning techniques.
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