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1. Introduction 

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique widely used in clinical diagnosis. 
However, acquiring high-quality MRI images usually involves lengthy scanning and complex data processing, limiting 
its widespread application in clinical practice. To tackle this issue, deep learning-based image reconstruction methods 
have gained significant attention and research. This paper focuses on comparing and analyzing three main deep learning 
models: Model-Based Deep Learning (MoDL) [1], Variational Network (VarNet) [2], and Self-supervised learning via 
data undersampling (SSDU) [3], to compare their difference in MRI image reconstruction. 

MoDL is a model-based approach for image reconstruction that uses a regularization prior based on convolution neural 
networks (CNNs) [1]. This proposed framework integrates deep learning with the capabilities of model-based 
reconstruction techniques. We utilize a variational framework incorporating a trained CNN and a data-consistency term 
to efficiently capture image redundancy. Additionally, an alternating recursive technique is employed, leading to the 
construction of a deep network upon unfolding. This network comprises data consistency blocks, which promote 
alignment with measurements, and interleaved CNN blocks, facilitating the retrieval of relevant information from the 
image dataset. For simpler cases like single-channel MRI recovery, analytical solutions for the quadratic sub-problem 
addressed by the data consistency block are available [4]. In more complex scenarios such as multichannel MRI, we 
recommend employing conjugate gradient (CG) optimization to solve the quadratic sub-problem [1]. 

Variational network (VarNet) combines the mathematical structure of variational models with deep learning [2]. We 
want to recreate clinical accelerated multi-coil MR data quickly and with excellent quality using VarNet. In this VarNet 
model, an unrolled gradient descent system contains a generalized compressed sensing reconstruction that is formulated 
as a variational model. Through an offline training process, all the parameters of this formulation—including the previous 
model specified by filter kernels and activation functions as well as the data term weights—are learned. After learning it, 
the model can be used online with data that has never been seen before. 

We propose a self-supervised method, which we call self-supervised learning via data undersampling (SSDU) [3]. It 
divides the obtained k-space indices into two disjoint sets. The DC unit for the network uses one of these, and the loss 
function in k-space is defined by the other set. As a result, all assumptions regarding image output or characteristics are 
left out when training and evaluating the network end-to-end using only the measurements that have been obtained [3]. 

In conclusion, this paper reproduces the codes of MoDL [1], VarNet [2] and SSDU [3] in MRI reconstructed images, 
describes their respective methods as well as compares and analyzes their reconstructed images of brain MRI. 

 
2. Methods 
2.1. Model-Based Deep Learning (MoDL) 

We express the image reconstruction of 𝑥 ∈ 𝐶! as the optimization problem: 
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In this context, 𝑁/  represents a CNN estimator of noise and alias patterns, which is dependent on the learned 
parameters 𝑤. We denote 𝑁/(𝑥) as: 

𝑁/(𝑥) = (𝐼 − 𝐷/)(𝑥) = 𝑥 − 𝐷/(𝑥).  (2) 



Here, 𝐷/(𝑥) represents the "denoised" version of 𝑥, obtained after eliminating alias artifacts and noise. Utilizing the 
CNN-based prior ‖𝑁/(𝑥)‖&, which yields high values when 𝑥 is affected by noise and alias patterns, leads to solutions 
that maintain data consistency and are minimally influenced by noise and alias patterns. Here, 𝜆  is a trainable 
regularization parameter. By substituting equation (2) into equation (1), we derive: 

𝑥"#$ = 𝑎𝑟𝑔min
%
‖𝐴(𝑥) − 𝑏‖&& + 𝜆‖𝑥 − 𝐷/(𝑥)‖&.  (3) 

As these approaches depend on forward models, the receptive field of the networks does not necessarily need to cover 
the entire image size. Moreover, given that the network's objective is to capture redundancies in the images, a network 
with substantially fewer parameters is adequate to achieve satisfactory results. 

We observe that the non-linear mapping 𝐷/(𝑥! + ∆𝑥) can be estimated by employing a Taylor series expansion 
centered around the n-th iteration: 

𝐷/(𝑥! + ∆𝑥) ≈ 𝐷/(𝑥!)12324
3!

+ 𝐽!4∇𝑥,  (4) 

where 𝐽! is the Jacobian matrix. Setting 𝑥! + ∆𝑥 = 𝑥, the penalty term can be approximated as 
‖𝑥 − 𝐷/(𝑥! + ∇𝑥)‖& ≈ ‖𝑥 − 𝑧!‖& + ‖𝐽!∆𝑥‖&  (5) 

It is observed that the second term tends towards zero for small perturbations (i.e., for small values of ‖∇𝑥‖). Given 
that the above approximation is only valid in the vicinity of 𝑥!, we derive the alternating algorithm that approximates 
equation (3): 

𝑥!56 = 𝑎𝑟𝑔min
%
‖𝐴(𝑥) − 𝑏‖&& + 𝜆‖𝑥 − 𝑧!‖&,  (6a) 

𝑧! = 𝐷/(𝑥!)  (6b) 
The sub-problem (6a) can be addressed by solving the normal equations: 

𝑥!56 = (𝐴7𝐴 + 𝜆𝐼)86122232224
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The procedure starts with the initialization of 𝑧: = 0. The overview of the iterative framework is illustrated in Fig 1B. 

 

Fig 1. Model-Based Deep Learning (MoDL) framework for image reconstruction. (A) is the CNN based denoising block Dw. (B) shows the recursive 

MoDL framework, where the denoising block Dw and data-consistency (DC) layer alternate. 

 
It illustrates the CNN architecture employed in this study (Fig 1A). For the implementation of the 𝑁/ block, we 

utilized an N-layer model with 64 filters at each layer. Each layer consists of a rectified linear unit (ReLU) as the non-
linear activation function (𝑓(𝑥) = max	(0, 𝑥)), followed by batch normalization (BN) and convolution (Conv). Notably, 
the N-th layer excludes ReLU to prevent truncation of the negative part of the learned noise patterns. The reconstructed 
image, serving as the output of the 𝐷/ block, is derived by applying the learned noise from the 𝑁/ block to its input, 
following the residual learning technique. Subsequently, this output is fed into the data consistency (DC) layer (Fig 1B).  

The recursive model proposed is shown in Fig 1B. Specifically, we configured the number of iterations k to be 1, 2, or 
10, and the number of layers N to be 5. The data consistency (DC) layer operates explicitly with complex inputs and 
yields a complex output since MR images are complex. The CNN component manages complex data by concatenating 



the real and imaginary parts as channels, thus transitioning from ℂ;×! space to ℝ;×!×& space. 
In MoDL model, we used mean-squared error (MSE) as our chosen loss function: 

MSE(𝑥, 𝑦) = 6
=
∑ (𝑥- − 𝑦-)&=
->6 ,  (8) 

where 𝑁 is the number of samples, 𝑥- is the i-th element in the reconstructed image, and 𝑦- is the i-th element in 
the ground truth image. 

 
2.2. Variational Network (VarNet) 

The VarNet defined by equation (9) with these parameters: filter kernels 𝐾-), activation functions Φ-
)?, and data term 

weights 𝜆). 
𝑥)56 = 𝑥) +∑ (𝐾-))4Φ-

)?(𝐾-)𝑥)) − 𝜆)𝐴∗(𝐴𝑥) − 𝑓)
="
->6 ,				0 ≤ 𝑡 ≤ 𝑇 − 1.  (9) 

Here, 𝑥 is a reconstructed image, 𝑓 is the given undersampled k-space data with noisy, where missing data are 
padded by zeros. 

The VarNet comprises T gradient descent iterations. To generate a reconstruction, the undersampled k-space data, coil 
sensitivity maps, and the zero-filling solution are inputted into the VarNet. Given the complex-valued nature of the images, 
separate filters 𝐾-) are learned for the real and imaginary planes. The non-linear activation function Φ-

)? combines the 
filter responses from both feature planes. Throughout the training process, the filter kernels, activation functions, and data 
term weights 𝜆) are iteratively learned. 

 

Fig 2. The training process for variational networks (VarNet). During an offline training process, the goal is to learn a set of parameters of the 

VarNet. To achieve this, we use a similarity measure to compare the current reconstruction image to an artifact-free reference. In order to compute an 

update of parameters, we propagate the reconstruction error back to the VarNet using this data. 

 
During the offline training process (Fig 2), the objective is to determine an optimal parameter set θ = {θ:, … , θ486}, 

θ) = {𝑤-A) , 𝑘-) , 𝜆)} for our proposed VarNet in Equation (9). To establish the training procedure, we aim to minimize a loss 
function over a set of images 𝑁 with respect to the parameters 𝜃. The loss function quantifies the similarity between the 
reconstructed image 𝑥 and a clean, artifact-free reference image 𝑦. In this context, we utilize the mean-squared error 
(MSE) as our chosen loss function: 

L(θ) = min
B

6
=
∑ (𝑥-(θ) − 𝑦-)&=
->6 ,  (10) 

where 𝑁 is the number of samples, 𝑥- is the i-th element in the predicted values, and 𝑦- is the i-th element in the 
true values. 
 



2.3. Self-supervised learning via data undersampling (SSDU) 
In this paper, the SSDU model operates on a principle similar to that of the MoDL model. However, a notable distinction 

arises as we substitute the representation of the 'denoised' version of x in the network structure, typically denoted as 𝐷/ 
(Fig 1B), with ResNet (Fig 3A). 

The neural network utilized in this study was constructed using a convolutional neural network (CNN) architecture 
based on ResNet. This CNN (Fig 3B) comprised an input layer, an output layer, and 15 residual blocks interconnected by 
skip connections, which facilitate the flow of information during network training. Each residual block contained two 
convolutional layers, with the first layer being followed by a rectified linear unit (ReLU), and the second layer being 
followed by a constant multiplication layer (xScale) with a factor of C = 0.1 (Fig 3C). All layers had a kernel size of 3 × 
3 and consisted of 64 channels. 

In SSDU model, a normalized ℓ6 − ℓ& loss was used: 

ℒ(𝑢, 𝑣) = ‖18D‖#
‖1‖#

+ ‖18D‖$
‖1‖$

.  (11) 

In this supervised configuration, the fully sampled k-space and the network output k-space are denoted by 𝑢 and 𝑣, 
respectively. A fully sampled encoding operator is employed to convert network output images to k-space, resulting in 
this network output k-space. On the other hand, in the suggested self-supervised training approach, 𝑢 and 𝑣 represent 
the acquired k-space measurements at the locations indicated by the loss mask, as well as the k-space corresponding to 
the network output image at those same places. 

 
Fig 3. Self-supervised Learning via Data Undersampling (SSDU) framework for image reconstruction. (A) shows the description of a traditional 

iterative optimization approach for regularized inverse reconstruction issues. Data consistency (DC) and regularization (R) are the two techniques that 

alternate in these algorithms. (B) is the framework of the ResNet (R). With 3 convolution layers overall and 15 residual blocks (RBs), the ResNet (R) 

architecture employed as the regularizer in this work. (C) shows the structure of the residual block (RB). It contains two convolution layers, the first of 

which is followed by a rectified linear unit (ReLU) and the second of which is followed by a constant multiplication layer. 

 
2.4. Data processing 
2.4.1. FastMRI Dataset 

Data used in the preparation of this article were obtained from the NYU fastMRI Initiative database 
(fastmri.med.nyu.edu) [5]. This raw dataset includes axial T1 weighted, T2 weighted and FLAIR images. 
 
2.4.2. Choice of Mask 

In MoDL model, we generated two kinds of mask: poisson mask (Fig 4A) and cartesian mask (Fig 4B). In the study, 
the poisson mask was employed to sample each image slice using a Poisson distribution with a parameter set to 8. 
Similarly, the cartesian mask was utilized to sample each image slice at a 4x acceleration rate. 

In VarNet model, we chose poisson mask with the parameter set to 8 (Fig 4A). 
In SSDU model, we need to use two masks (Fig 4C). The trn mask (Fig 4C left) and the loss mask (Fig 4C right) are 

two distinct sets generated using the proposed SSDU technique from the acquired subsampled data. The trn mask serves 



as the initial set of indices utilized within the data consistency unit of the unrolled network, while the loss mask is chosen 
from the acquired k-space points to define the loss function. A uniformly random selection from the elements of the 
acquired k-space locations was employed to establish the distribution of the loss mask. During training, the output of the 
network is converted to k-space, and the resulting reconstructed k-space values are compared with the subset of available 
measurements at the loss mask. Subsequently, the network parameters are adjusted based on this training loss. 

 

Fig 4. Mask Demonstration. (A) is poisson mask and it is used in MoDL and VarNet model. (B) is cartesian mask and it is used in MoDL model. (C) 

The trn mask and loss mask are generated by poisson mask and they are used in SSDU model. The trn mask is utilized in the data consistency unit of 

the SSDU network, while the loss mask defines the training loss function. To compare the accessible subset of measurements at loss mask with the 

corresponding reconstructed k-space values, the output of the network is converted to k-space during training. The network parameters are then changed 

in response to this training loss. 

 
2.5. Metrics 
2.5.1. Peak Signal-to-Noise Ratio (PSNR) 

The Peak Signal-to-Noise Ratio (PSNR) quantifies the relationship between the maximum possible image intensity 
across a volume and the power of distortion noise and other errors: 

𝑃𝑆𝑁𝑅(𝑥, 𝑦) = 10 log6:
EFG	(.)#

JKL(%,.)
.  (12) 

In the provided equation, 𝑥 represents the reconstructed volume, 𝑦 denotes the target volume, max	(𝑦) signifies the 
largest entry in the target volume 𝑦 , 𝑀𝑆𝐸(𝑥, 𝑦)  represents the mean square error between 𝑥  and 𝑦 , defined as 

6
!
‖𝑥 − 𝑦‖&& , where 𝑛  is the number of entries in the target volume 𝑦 . Higher values of PSNR indicate superior 

reconstruction quality. 
 
2.5.2. Structural Similarity (SSIM) 

The Structural Similarity (SSIM) index evaluates the similarity between two images by exploiting the 
interdependencies among neighboring pixels. SSIM inherently assesses the structural characteristics of objects within an 



image and is computed across various image locations using a sliding window. The resultant similarity between two image 
patches 𝑥 (reconstructed volume) and 𝑦 (target volume) is defined as: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = (&N%N&5O$)(&P%&5O#)
(N%#5N&#5O$)(P%#5P&#5O#)

,  (13) 

where 𝜇% and 𝜇. are the means of 𝑥 and 𝑦 respectively, 𝜎%& and 𝜎.& are the variances of 𝑥 and 𝑦 respectively, 
𝜎%.  is the covariance between 𝑥 and 𝑦, 𝐶6 and 𝐶& are constants added for stability, typically set to (𝑘6𝐿)&  and 
(𝑘&𝐿)& respectively, where 𝑘6 and 𝑘& are parameters controlling the influence of contrast and structure similarity, and 
𝐿 is the dynamic range of pixel values. In this paper, we set 𝑘6 = 0.01 and 𝑘& = 0.03, 𝐿 = max(𝑦) −min	(𝑦). 
 
3. Results 

All model used Adam as optimizer and the learning rate was set to 0.001. There were 240 training data and 48 test data 
in T2 dataset, 234 training data and 42 test data in T1 dataset, and also 240 training data and 48 test data in FLAIR dataset. 

We compare the effect of using different masks on the reconstruction of T2, T1, and FLAIR images in MoDL model 
(Fig 5). When the number of iterations k is 1 and the number of epochs is 50, by comparing PSNR and SSIM, as well as 
reconstructing the image, the results are better using the poisson mask, where T1 has a better score (PSNR=30.5713, 
SSIM=0.7939), whereas the number of iterations k is 2, FLAIR reconstructed image has a better result (PSNR=25.9402, 
SSIM=0.7422). In a word, when we use poisson mask in the MoDL model, the reconstructed effect is better. It is possible 
that we need to perform more epochs to get better results when using the cartesian mask. 

 

Fig 5. Reconstructed MRI images based on MoDL model with different mask (poisson mask and cartesian mask). It shows the reconstructed 

image of T2, T1 and FLAIR based on MoDL model with PSNR and SSIM, when the number of epochs is 50, the number of iteration k is 1 and 2 

respectively, and different mask (poisson and cartesian) are used. 

 



 
Fig 6. Reconstructed MRI images based on MoDL model with poisson mask. It shows the reconstructed image of T2, T1 and FLAIR based on 

MoDL model with PSNR and SSIM, when the number of epochs is 50 and 100 respectively, the number of iteration k is 1, 2 and 10 correspondingly 

are used. 

 
Since better results are obtained with the poisson mask, we use the poisson mask for the remainder of the training 

process.  
We compared the reconstruction results for different number of iterations k (k=1, 2, 10) and different number of epochs 

(epochs=50, 100) based on MoDL model (Fig 6). For T2 image, it has a better score when the number of iterations k is 1 
and the number of epochs is 100 (PSNR=32.4779, SSIM=0.9021). For T1 image, we obtain a better result when the 
number of iterations k is 1 and the number of epochs is 50 (PSNR=30.5713, SSIM=0.7939). Whereas, for FLAIR image, 
the reconstruction is better when the number of iterations k is 1 and the number of epochs is 100 (PSNR=29.5543, 
SSIM=0.8067). 

Moreover, we additionally evaluated the reconstruction outcomes across various numbers of iterations (k = 1, 2, 10) 
and different numbers of epochs (epochs = 50, 100) using the VarNet model (Fig 7). For T2 dataset, they perform well 
when the number of epochs is 100 and the number of iterations is 1 (PSNR=34.9859, SSIM=0.9156) and 2 
(PSNR=34.9828, SSIM=0.9156), respectively. For T1 dataset, it has better reconstruction when the number of iterations 



k is 10 and the number of epochs is 50 (PSNR=31.9726, SSIM=0.7906). For FLAIR dataset, we obtain a better score 
when the number of iteration is 2 and the number of epochs is 100 (PSNR=32.4424, SSIM=0.8351). 

In general, satisfactory outcomes were achieved for all kinds of images reconstructed using VarNet, with T2 exhibiting 
the most favorable performance (PSNR>33.5, SSIM>0.9). 

 
Fig 7. Reconstructed MRI images based on VarNet model with poisson mask. It shows the reconstructed image of T2, T1 and FLAIR based on 

VarNet model with PSNR and SSIM, when the number of epochs is 50 and 100 respectively, the number of iteration k is 1, 2 and 10 correspondingly 

are used.  

 
Furthermore, we conducted additional evaluations of the reconstruction results utilizing the SSDU model across the 

same numbers of epochs (epochs = 50) and varying numbers of iterations (k = 1, 2, 10) (Fig 8). When the number of 
iterations is 2, we obtain a better reconstructed image based on T2 dataset (PSNR=18.0507, SSIM=0.4135). In the T1 
dataset, it has a better PSNR score when the number of iterations is 1 (PSNR=18.4057), whereas it has a better SSIM 
score when the number of iterations k is 2 (SSIM=0.4591). For FLAIR image, it performs well when the number of 
iterations k is 10 (PSNR=20.7633, SSIM=0.6222). 

Overall, training with FLAIR data in the SSDU model produces superior reconstructed images when the number of 
iterations is 10 and the number of epochs is 50(PSNR=20.7633, SSIM=0.6222). 



 

Fig 8. Reconstructed MRI images based on SSDU model with poisson mask. It shows the reconstructed image of T2, T1 and FLAIR based on SSDU 

model with PSNR and SSIM, when the number of epochs is 50, the number of iteration k is 1, 2 and 10 respectively are used. 

 
4. Discussion 

In order to reconstruct MRI images, we investigated the efficacy of several reconstruction models in this work, 
including MoDL, VarNet, and SSDU. According to our findings, the quality of reconstructed images is highly influenced 
by the reconstruction model and hyperparameter selection. 

First of all, we noticed that the performance of MoDL model was significantly influenced by the type of mask selected, 
specifically the poisson mask. The poisson mask demonstrated a consistent ability to capture image redundancy and 
minimize reconstruction artifacts when compared to the cartesian mask in a variety of iterations and epochs. For the 
purpose of improving reconstruction results, we subsequently trained using the poisson mask. 

Additionally, we obtained good PSNR and SSIM scores with a limited number of epochs and iterations in our VarNet 
model studies, particularly for the T2 dataset. As a consequence, high-fidelity reconstructions are produced by VarNet 
efficiently utilizing the structural information found in the MRI data. The necessity for meticulous optimization was 
highlighted by inconsistent performance of VarNet across datasets and hyperparameter settings. 

Moreover, MRI image reconstruction using the SSDU model demonstrated promise, especially when trained using 
FLAIR data. Across several iterations and datasets, its performance showed some variation. It could be possible to 
improve the performance of SSDU by looking into hyperparameter optimization and modifying the architecture. 
 
5. Conclusion 

In conclusion, we show that different deep learning models work well for reconstructing MRI images. The MoDL 
model consistently produced high-quality reconstructions across several datasets when trained with a poisson mask. 
Particularly for the T2 dataset, VarNet produced good outcomes, suggesting that it has potential for practical applications. 
Through training using FLAIR data, SSDU demonstrated competitive performance in the meantime. Overall, our results 
show the significance that model selection and hyperparameter adjusting are to the best MRI image reconstruction 
algorithms when designing them for clinical applications. Clinical outcomes and diagnostic accuracy in medical imaging 
may be enhanced by more study in this field. 
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