

Self-gated self-supervised ADMM unrolling enables mesoscale high-resolution motion-robust diffusion-weighted imaging

Zhengguo Tan¹, Patrick A Liebig ², Annika Hofmann ³, Michael Jaroszewicz ¹, Yun Jiang ¹, Vikas Gulani ¹, Frederik B Laun ⁴, Florian Knoll ³

- 1. Michigan Institute for Imaging Technology and Translation (MIITT), Radiology, University of Michigan, Ann Arbor, Michigan, USA
- 2. Siemens Healthcare GmbH, Erlangen, Germany
- 3. Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- 4. Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Declaration of Financial Interests or Relationships

Z Tan:

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

INTRODUCTION

Diffusion-Weighted Imaging (DWI)¹

- Powerful tool for acute stroke diagnosis, fiber tracking, cancer staging, ...
- Challenges:

Shot-to-shot phase variation

Motion

Previous Work: Mesoscale High-Resolution DWI Acquisition with NAViEPI²

Brain DWI Protocol: 0.7 mm ISO

Shots: 3; Acceleration: 2 x 2; Matrix size: 286 x 286 x 176; 1 x b0 & 20 x b1000; TEs/TR: 58/98/15000 ms; TA: 16 minutes.

TA reduced to 10 minutes w/o navigators.

Question: Selfgated reconstruction for accelerated DWI?

State-of-the-Art Selfgated DWI Reconstruction

• MUltiplexed Sensitivity-Encoding (MUSE): simultaneous multi-slice (SMS) multi-shot SENSE

journal homepage: www.elsevier.com/locate/ynimg

Technical Note

A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)

Nan-kuei Chen^{*}, Arnaud Guidon, Hing-Chiu Chang, Allen W. Song Brain Imaging and Analysis Center, Duke University Medical Center, Box 2737, Hock Plaza, Durham, NC 27710, USA

Low Rankness

> MUSSELS: low-rankness among shots

Magnetic Resonance in Medicine 78:494–507 (2017)

Multi-Shot Sensitivity-Encoded Diffusion Data Recovery Using Structured Low-Rank Matrix Completion (MUSSELS)

Merry Mani,¹ Mathews Jacob,²* Douglas Kelley,³ and Vincent Magnotta^{1,4,5}

> LLR: Locally low rank of spatial-diffusion matrices
FULL PAPER
Magnetic Resonance in Medicine

Multi-shot diffusion-weighted MRI reconstruction with magnitude-based spatial-angular locally low-rank regularization (SPA-LLR)

Yuxin Hu^{1,2}IXiaole Wang¹Qiyuan Tian^{1,2}IGrant Yang^{1,2}Bruce Daniel^{2,3}IJennifer McNab²Brian Hargreaves^{1,2,3}

Inspiration: Self2Self & Zero-Shot Learning

• Self2Self ³

A denoising neural network can be learned from one single image.

• Zero-shot learning ^{4,5}

The regularization in iterative reconstructions can be learned without full-sampled k-space data.

• Question: Self-supervised learning for high-resolution joint DWI reconstruction?

^{3.} Quan Y, et al. Self2Self with dropout: Learning self-supervised denoising from single image. CVPR (2020).

^{4.} Yaman B, et al. Zero-shot self-supervised learning for MRI reconstruction. ICLR (2022).

^{5.} Heydari A, et al. Joint MAPLE: Accelerated joint T1 and T2* mapping with scan specific self-supervised networks. Magn Reson Med (2024).

METHODS

Joint k-q-Slice Reconstruction

• Joint k-q-slice forward model (github.com/ZhengguoTan/NAViEPI)

 $\begin{array}{c} \mathsf{DWI} \\ [x,\,y,\,z,\,q] \end{array}$

$$\underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \mathcal{D}_{\omega}(\mathbf{x})$$

Self-Supervised ADMM Unrolling Reconstruction

(a) sampling mask splitting

(b) ADMM ⁶ unrolling

(c) training

(d) spatial-diffusion convolution

RESULTS

Joint k-q-Space ADMM Unroll Enables Selfgated DWI Reconstruction

MUSE + Denoiser

ADMM Unroll

0.7 mm DWI Enables Visualization of the "Hidden-Away" Claustrum

Navigated MUSE + Denoiser

Selfgated ADMM Unroll

• Mean diffusion-weighted images from 20 directions at b = 1000 s/mm² are displayed

Joint k-q-Space ADMM Unroll Enables Selfgated DWI Reconstruction

0.7 mm ISO with 150 slices and 21 diffusion volumes with b = 1000 s/mm² at 10 minutes

Motion Robustness

15

SUMMARY

Summary

• Self-supervised ADMM unrolling enables mesoscale DWI at short scan time.