MRI: Speed, Phase, Echo

Zhengguo Tan

> Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

June 28, 2023

Outline

Self Introduction

What I have done
in Frahm lab
jointly in Frahm \& Uecker lab
in Knoll lab
Inspirations
Deep Learning Empowered Image Reconstruction

Summary

Self Introduction

Zhengguo \leftrightarrow Jung Gwoh

how to pronounce the chinese name Zheng Guo

The Chinese name "Zheng Guo" is pronounced as "jung gwoh."

The pronunciation of "Zheng" is similar to the English word "jungle," but with a sharper "j" sound at the beginning, like the "s" in "measure." It is followed by a short "uh" sound.

The pronunciation of "Guo" sounds like the English word "go," but with a slight "w" sound at the end. The "o" is pronounced as a short "oh" sound.

Put together, "Zheng Guo" is pronounced as "jung gwoh."

Academic Background

1. Chronologically,

- 2022 - now, senior postdoc in Prof. Florian Knoll's lab in Erlangen
- 2019-2021, DFG ${ }^{1}$ funded temporary principal investigator ${ }^{2}$ in Prof. Martin Uecker's lab in University Medical Center Göttingen
- 2012-2016, PhD in Prof. Jens Frahm's lab in Max Planck Institute

[^0]
Academic Background

1. Chronologically,

- 2022 - now, senior postdoc in Prof. Florian Knoll's lab in Erlangen
- 2019-2021, DFG ${ }^{1}$ funded temporary principal investigator ${ }^{2}$ in Prof. Martin Uecker's lab in University Medical Center Göttingen
- 2012-2016, PhD in Prof. Jens Frahm's lab in Max Planck Institute

2. Technically,

- Pulse sequence programming skill trained by the FLASH inventor
- Iterative image reconstruction skill trained by the BART inventor
- Artificial intelligence skill trained by the VarNet inventor

[^1]
Collaboration \& Teaching

1. Collaboration

- UHF Predevelopment Team at Siemens
- Prof. Frederik Laun at University Hospital Erlangen
- Prof. Gene Kim at Cornell University

Collaboration \& Teaching

1. Collaboration

- UHF Predevelopment Team at Siemens
- Prof. Frederik Laun at University Hospital Erlangen
- Prof. Gene Kim at Cornell University

2. Teaching at FAU

- Computational Imaging Project for master students
- Pulseq (together with Prof. Moritz Zaiss) for master students
- Medical Engineering II (blackboard exercises) for bachelor students

Collaboration \& Teaching

1. Collaboration

- UHF Predevelopment Team at Siemens
- Prof. Frederik Laun at University Hospital Erlangen
- Prof. Gene Kim at Cornell University

2. Teaching at FAU

- Computational Imaging Project for master students
- Pulseq (together with Prof. Moritz Zaiss) for master students
- Medical Engineering II (blackboard exercises) for bachelor students

3. Master thesis at FAU

- Ms. Soundarya Soundarresan
- Mr. Kai Zhao

What I have done

Real-Time Flow MRI based on Asymmetric-Echo Radial Sampling ${ }^{3}$

- Interleaved acquisition: $1 x$ flow-compensated $(\mathrm{S}=0)+1 x$ flow-encoded $(S=1)$

[^2]
Real-Time Flow MRI based on Asymmetric-Echo Radial Sampling ${ }^{3}$

- Interleaved acquisition: $1 \times$ flow-compensated $(\mathrm{S}=0)+1 x$ flow-encoded $(S=1)$
- Asymmetric-echo readout to reduce TR

[^3]
Real-Time Flow MRI based on Asymmetric-Echo Radial Sampling ${ }^{3}$

- Interleaved acquisition: $1 \times$ flow-compensated $(\mathrm{S}=0)+1 x$ flow-encoded $(S=1)$
- Asymmetric-echo readout to reduce TR
- Temporal resolution: 36 ms per velocity map

[^4]
Real-Time Flow MRI: Model-based Reconstruction ${ }^{4,5}$

- Idea: to jointly estimate phase-difference maps

[^5]
Real-Time Flow MRI: Model-based Reconstruction ${ }^{4,5}$

- Idea: to jointly estimate phase-difference maps
- Solution: to solve a nonlinear least square problem

$$
\begin{align*}
\Phi(x) & =\operatorname{argmin}_{x}\left\|\mathbf{y}-\operatorname{PFC}\left\{\rho \cdot e^{i \Delta \phi \cdot \boldsymbol{S}}\right\}\right\|_{2}^{2}+\lambda\|x\|_{2}^{2} \tag{1}\\
x & =\left(\rho, \Delta \phi, c_{1}, \cdots, c_{N}\right)^{T}
\end{align*}
$$

[^6]
Real-Time Flow MRI: Model-based Reconstruction ${ }^{4,5}$

- Idea: to jointly estimate phase-difference maps
- Solution: to solve a nonlinear least square problem

$$
\begin{align*}
\Phi(x) & =\operatorname{argmin}_{x}\left\|\mathbf{y}-\operatorname{PFC}\left\{\rho \cdot e^{i \Delta \phi \cdot S}\right\}\right\|_{2}^{2}+\lambda\|x\|_{2}^{2} \tag{1}\\
x & =\left(\rho, \Delta \phi, c_{1}, \cdots, c_{N}\right)^{T}
\end{align*}
$$

- Pros: enable the regularization of phase-difference maps $(\Delta \phi)$

[^7]
Real-Time Flow MRI: Model-based Reconstruction ${ }^{4,5}$

- Idea: to jointly estimate phase-difference maps
- Solution: to solve a nonlinear least square problem

$$
\begin{align*}
\Phi(x) & =\operatorname{argmin}_{x}\left\|\mathbf{y}-\operatorname{PFC}\left\{\rho \cdot e^{i \Delta \phi \cdot \boldsymbol{S}}\right\}\right\|_{2}^{2}+\lambda\|x\|_{2}^{2} \tag{1}\\
x & =\left(\rho, \Delta \phi, c_{1}, \cdots, c_{N}\right)^{T}
\end{align*}
$$

- Pros: enable the regularization of phase-difference maps $(\Delta \phi)$
- Cons: require the implementation of the Jacobian matrix and the balance of partial derivatives

[^8]
Balancing Partial Derivatives: Data-Driven Approach ${ }^{6}$

- kind of self-gating, like XD-GRASP or GRASP-Pro
- Solution: to track the scaling value from measured k-space data

$$
\begin{equation*}
s=0.5 \cdot \frac{\left\|y_{1}\right\|_{2}+\left\|y_{2}\right\|_{2}}{\left\|y_{1}-y_{2}\right\|_{2}} \tag{2}
\end{equation*}
$$

[^9]
Balancing Partial Derivatives: Eigenvalue Approach ${ }^{7}$

1. kind of numerical methods, like batch normalization
2. to compute the matrix norm of the derivative operator

[^10]
Real-Time Aortic Blood Flow MRI at 36 ms

magnitude images

Multi-Echo Radial Sampling ${ }^{8,9}$

- use blip gradients to traverse among echoes
- use spoiler gradients for stack-of-stars volumetric acquisition

[^11]${ }^{9}$ Tan Z, et al. Free-breathing liver fat, R_{2}^{*} and B_{0} field mapping using multi-echo radial FLASH and regularized model-based reconstruction. IEEE Trans Med Imaging (2023).

Application \#1: Free-Breathing Liver Fat \& R_{2}^{*} Quantification

- to solve a generalized nonlinear inverse problem

$$
\begin{align*}
\Phi(x) & =\operatorname{argmin}_{x}\|\mathbf{y}-\mathbf{P F C B}(x)\|_{2}^{2}+\lambda R(x) \\
x & =\left(\mathrm{W}, \mathrm{~F}, R_{2}^{*}, f_{B_{0}}, c_{1}, \cdots, c_{N}\right)^{T} \tag{3}
\end{align*}
$$

Application \#1: Free-Breathing Liver Fat \& R_{2}^{*} Quantification

- to solve a generalized nonlinear inverse problem

$$
\begin{align*}
\Phi(x) & =\operatorname{argmin}_{x}\|\mathbf{y}-\mathbf{P F C B}(x)\|_{2}^{2}+\lambda R(x) \tag{3}\\
x & =\left(\mathrm{W}, \mathrm{~F}, R_{2}^{*}, f_{B_{0}}, c_{1}, \cdots, c_{N}\right)^{T}
\end{align*}
$$

- multi-echo gradient echo signal model

$$
\begin{equation*}
B(x): \rho_{m}=\left(\mathrm{W}+\mathrm{F} \cdot z_{m}\right) \cdot e^{-R_{2}^{*} \mathrm{TE}_{m}} \cdot e^{i 2 \pi f_{B_{0}} \mathrm{TE}_{m}} \tag{4}
\end{equation*}
$$

Application \#1: Free-Breathing Liver Fat \& R_{2}^{*} Quantification

- to solve a generalized nonlinear inverse problem

$$
\begin{align*}
\Phi(x) & =\operatorname{argmin}_{x}\|\mathbf{y}-\mathbf{P F C B}(x)\|_{2}^{2}+\lambda R(x) \tag{3}\\
x & =\left(\mathrm{W}, \mathrm{~F}, R_{2}^{*}, f_{B_{0}}, c_{1}, \cdots, c_{N}\right)^{T}
\end{align*}
$$

- multi-echo gradient echo signal model

$$
\begin{equation*}
B(x): \rho_{m}=\left(\mathrm{W}+\mathrm{F} \cdot z_{m}\right) \cdot e^{-R_{2}^{*} \mathrm{TE}_{m}} \cdot e^{i 2 \pi f_{B_{0}} \mathrm{TE}_{m}} \tag{4}
\end{equation*}
$$

- Cons: the field inhomogeneity map $\left(f_{B_{0}}\right)$ is sensitive to initial guess

Application \#1: Free-Breathing Liver Fat \& R_{2}^{*} Quantification

Appliation \#2: Volumetric Brain T_{2}^{*}-Weighted Imaging ${ }^{10}$

- spatial resolution 1 mm isotropic
- 35 echoes per excitation and 7 shots per partition
- use linear subspace modeling and reconstruction instead

[^12]
Brain Diffusion MRI at 7 T

- Challenges:

1. Specific Absorption Rate (SAR) is linearly proportional to the square of B_{0}
2. Shorter T_{2} relaxation at 7 T
3. Increased sensitivity to field inhomogeneity, incl. B_{0} and B_{1}

Brain Diffusion MRI State-of-the-Art: MUSE ${ }^{11}$

- uses 4-shot interleaved EPI (iEPI), resembling a fully-sampled k-space
- self-navigated shot-to-shot phase variation estimation
- limited number of shots has been reported

${ }^{11}$ Chen NK, et al. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). Neurolmage (2013).

Undersampled iEPI with k_{y} Shift Encoding ${ }^{12}$

- Acceleration factor per shot:

$$
\begin{equation*}
R_{\text {shot }}=R_{\text {in-plane }} \times N_{\text {shot }} \tag{5}
\end{equation*}
$$

${ }^{12}$ Tan Z, et al. under review.

NAViEPI: where iEPI meets rsEPI

- Navigator-based iEPI with consistent effective ESP between echoes
- enables:

1. minimal distortion mismatch between echoes
2. flexible number of shots
3. reliable shot-to-shot phase estimation

k_{y} Shifting is Beneficial in Joint k - q-Slice Reconstruction retro. 1-shot w/o shift retro. 1-shot w/ shift

Efficiency of NAViEPI

3-scan trace acquisition with voxel size $0.5 \times 0.5 \times 2.0 \mathrm{~mm}^{3}$
single-shot EPI @ 46 sec

NAViEPI @ 98 sec

JETS-NAViEPI @ 98 sec

B_{1}^{+}Field Inhomogeneity Challenge

3-scan trace acquisition with voxel size $0.5 \times 0.5 \times 2.0 \mathbf{~ m m}^{3}$

JETS-NAViEPI: Reproducibility

Is NAViEPI a Reasonable Approach?

- In the sub-mm case, the base resolution is 440×440

	Required phase-encoding lines (ETL)		
	1-Shot EPI	4-Shot MUSE	5-Shot NAViEPI
partial Fourier $(\times(6 / 8))$	330		
Acceleration $\left(/ R_{\text {in-plane }}\right)$	110	330	110
Shots $\left(/ N_{\text {shot }}\right)$	110	≈ 82	22

\rightarrow Much reduced spatial distortion with NAViEPI

Inspirations: Speed, Phase, Echo

Inspirations: Speed, Phase, Echo

Inspirations: Speed, Phase, Echo

Connecting MR in a changing world: Look outwards \& inwards

Deep Learning: Any Novelty or Significance?

- Trustworthy
- Explainable
- Robust
- Data-Efficiency

Deep Learning: Any Novelty or Significance?

- Trustworthy
- Explainable
- Robust
- Data-Efficiency
- nonlinear \rightarrow linear \rightarrow nonlinear
\checkmark Deep learning frameworks offer powerful optimizers!

Preliminary Work on Deep Learning: AutoEncoder

Preliminary Work on Deep Learning: 1.2 mm Isotropic Resolution

${ }^{13}$ Soundarresan S, Tan Z, et al. submitted to ESMRMB

Preliminary Work on Deep Learning: Latent Signal

Summary

Thank You for Your Attention!

1. This talk won't be possible without these great people:

- Dr. Jens Frahm and his team
- Dr. Martin Uecker and his team
- Dr. Florian Knoll and his team
- Dr. Robin Heidemann
- Dr. Patrick Liebig
- Dr. Frederik Laun
- Ms. Soundarya Soundarresan

Thank You for Your Attention!

1. This talk won't be possible without these great people:

- Dr. Jens Frahm and his team
- Dr. Martin Uecker and his team
- Dr. Florian Knoll and his team
- Dr. Robin Heidemann
- Dr. Patrick Liebig
- Dr. Frederik Laun
- Ms. Soundarya Soundarresan

2. Thank you for your attention again.

[^0]: ${ }^{1}$ DFG: Deutsche Forschungsgemeinschaft, https://www.dfg.de/
 ${ }^{2}$ project number: 427934942

[^1]: ${ }^{1}$ DFG: Deutsche Forschungsgemeinschaft, https://www.dfg.de/
 ${ }^{2}$ project number: 427934942

[^2]: ${ }^{3}$ Untenberger M \#, Tan Z \#, et al. Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes. Magn Reson Med (2016). \# equal contribution

[^3]: ${ }^{3}$ Untenberger M \#, Tan Z \#, et al. Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes. Magn Reson Med (2016). \# equal contribution

[^4]: ${ }^{3}$ Untenberger M \#, Tan Z \#, et al. Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes. Magn Reson Med (2016). \# equal contribution

[^5]: ${ }^{4}$ Tan Z, et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magn Reson Med (2017).
 ${ }^{5}$ Wang X, Tan Z, et al. Physics-based reconstruction methods for MRI. Philos Trans Royal Soc A (2021).

[^6]: ${ }^{4}$ Tan Z, et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magn Reson Med (2017).
 ${ }^{5}$ Wang X, Tan Z, et al. Physics-based reconstruction methods for MRI. Philos Trans Royal Soc A (2021).

[^7]: ${ }^{4}$ Tan Z, et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magn Reson Med (2017).
 ${ }^{5}$ Wang X, Tan Z, et al. Physics-based reconstruction methods for MRI. Philos Trans Royal Soc A (2021).

[^8]: ${ }^{4}$ Tan Z, et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magn Reson Med (2017).
 ${ }^{5}$ Wang X, Tan Z, et al. Physics-based reconstruction methods for MRI. Philos Trans Royal Soc A (2021).

[^9]: ${ }^{6}$ Tan Z, et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magn Reson Med (2017).

[^10]: ${ }^{7}$ Tan Z, et al. An eigenvalue approach for the automatic scaling of unknowns in model-based reconstructions: Application to real-time phase-contrast flow MRI. NMR Biomd (2017).

[^11]: ${ }^{8}$ Tan Z, et al. Dynamic water/fat separation and B_{0} inhomogeneity mapping - joint estimation using undersampled triple-echo multi-spoke radial FLASH. Magn Reson Med (2019).

[^12]: ${ }^{10}$ Tan Z, et al. under review

