MRI: Speed, Phase, Echo

Zhengguo Tan

Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

June 28, 2023

Outline

Self Introduction

What I have done in Frahm lab jointly in Frahm & Uecker lab in Knoll lab Inspirations Deep Learning Empowered Image Reconstruction

Summary

Self Introduction

$\sf Zhengguo \leftrightarrow \sf Jung \; \sf Gwoh$

how to pronounce the chinese name Zheng Guo

The Chinese name "Zheng Guo" is pronounced as "jung gwoh."

The pronunciation of "Zheng" is similar to the English word "jungle," but with a sharper "j" sound at the beginning, like the "s" in "measure." It is followed by a short "uh" sound.

The pronunciation of "Guo" sounds like the English word "go," but with a slight "w" sound at the end. The "o" is pronounced as a short "oh" sound.

Put together, "Zheng Guo" is pronounced as "jung gwoh."

Academic Background

- 1. Chronologically,
 - 2022 now, senior postdoc in Prof. Florian Knoll's lab in Erlangen
 - 2019 2021, DFG¹ funded temporary principal investigator² in Prof. Martin Uecker's lab in University Medical Center Göttingen
 - > 2012 2016, PhD in Prof. Jens Frahm's lab in Max Planck Institute

¹DFG: Deutsche Forschungsgemeinschaft, https://www.dfg.de/

²project number: 427934942

Academic Background

- 1. Chronologically,
 - 2022 now, senior postdoc in Prof. Florian Knoll's lab in Erlangen
 - 2019 2021, DFG¹ funded temporary principal investigator² in Prof. Martin Uecker's lab in University Medical Center Göttingen
 - > 2012 2016, PhD in Prof. Jens Frahm's lab in Max Planck Institute
- 2. Technically,
 - Pulse sequence programming skill trained by the FLASH inventor
 - Iterative image reconstruction skill trained by the BART inventor
 - Artificial intelligence skill trained by the VarNet inventor

¹DFG: Deutsche Forschungsgemeinschaft, https://www.dfg.de/

²project number: 427934942

Collaboration & Teaching

- 1. Collaboration
 - UHF Predevelopment Team at Siemens
 - Prof. Frederik Laun at University Hospital Erlangen
 - Prof. Gene Kim at Cornell University

Collaboration & Teaching

- 1. Collaboration
 - UHF Predevelopment Team at Siemens
 - Prof. Frederik Laun at University Hospital Erlangen
 - Prof. Gene Kim at Cornell University
- 2. Teaching at FAU
 - Computational Imaging Project for master students
 - Pulseq (together with Prof. Moritz Zaiss) for master students
 - Medical Engineering II (blackboard exercises) for bachelor students

Collaboration & Teaching

- 1. Collaboration
 - UHF Predevelopment Team at Siemens
 - Prof. Frederik Laun at University Hospital Erlangen
 - Prof. Gene Kim at Cornell University
- 2. Teaching at FAU
 - Computational Imaging Project for master students
 - Pulseq (together with Prof. Moritz Zaiss) for master students
 - Medical Engineering II (blackboard exercises) for bachelor students
- 3. Master thesis at FAU
 - Ms. Soundarya Soundarresan
 - 🕨 Mr. Kai Zhao

What I have done

Real-Time Flow MRI based on Asymmetric-Echo Radial Sampling ³

lnterleaved acquisition: 1x flow-compensated (S = 0) + 1x flow-encoded (S = 1)

³Untenberger M #, Tan Z #, et al. Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes. *Magn Reson Med* (2016). # equal contribution

What I have done | in Frahm lab

Real-Time Flow MRI based on Asymmetric-Echo Radial Sampling ³

- lnterleaved acquisition: 1x flow-compensated (S = 0) + 1x flow-encoded (S = 1)
- Asymmetric-echo readout to reduce TR

³Untenberger M #, Tan Z #, et al. Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes. Magn Reson Med (2016). # equal contribution

What I have done | in Frahm lab

Real-Time Flow MRI based on Asymmetric-Echo Radial Sampling ³

- Interleaved acquisition: 1x flow-compensated (S = 0) + 1x flow-encoded (S = 1)
- Asymmetric-echo readout to reduce TR
- ▶ Temporal resolution: 36 ms per velocity map

³Untenberger M #, Tan Z #, et al. Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes. *Magn Reson Med* (2016). # equal contribution

What I have done | in Frahm lab

Idea: to jointly estimate phase-difference maps

⁵Wang X, Tan Z, et al. Physics-based reconstruction methods for MRI. Philos Trans Royal Soc A (2021).

⁴Tan Z, et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magn Reson Med (2017).

- Idea: to jointly estimate phase-difference maps
- Solution: to solve a nonlinear least square problem

$$\Phi(\mathbf{x}) = \operatorname{argmin}_{\mathbf{x}} \left\| \mathbf{y} - \mathbf{PFC} \{ \rho \cdot e^{i\Delta\phi \cdot S} \} \right\|_{2}^{2} + \lambda \left\| \mathbf{x} \right\|_{2}^{2}$$

$$\mathbf{x} = (\rho, \Delta\phi, c_{1}, \cdots, c_{N})^{T}$$
(1)

⁴ Tan Z, et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magn Reson Med (2017).

⁵Wang X, Tan Z, et al. Physics-based reconstruction methods for MRI. Philos Trans Royal Soc A (2021).

- Idea: to jointly estimate phase-difference maps
- Solution: to solve a nonlinear least square problem

$$\Phi(x) = \operatorname{argmin}_{x} \left\| \mathbf{y} - \mathbf{PFC} \{ \rho \cdot e^{i\Delta\phi \cdot S} \} \right\|_{2}^{2} + \lambda \left\| x \right\|_{2}^{2}$$

$$x = (\rho, \Delta\phi, c_{1}, \cdots, c_{N})^{T}$$
(1)

▶ Pros: enable the regularization of phase-difference maps $(\Delta \phi)$

⁴Tan Z, et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magn Reson Med (2017).

⁵Wang X, Tan Z, et al. Physics-based reconstruction methods for MRI. Philos Trans Royal Soc A (2021).

- Idea: to jointly estimate phase-difference maps
- Solution: to solve a nonlinear least square problem

$$\Phi(x) = \operatorname{argmin}_{x} \left\| \mathbf{y} - \mathsf{PFC} \{ \rho \cdot e^{i\Delta\phi \cdot S} \} \right\|_{2}^{2} + \lambda \left\| x \right\|_{2}^{2}$$

$$x = (\rho, \Delta\phi, c_{1}, \cdots, c_{N})^{T}$$
(1)

- ▶ Pros: enable the regularization of phase-difference maps $(\Delta \phi)$
- Cons: require the implementation of the Jacobian matrix and the balance of partial derivatives

⁴Tan Z, et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magn Reson Med (2017).

⁵Wang X, Tan Z, et al. Physics-based reconstruction methods for MRI. Philos Trans Royal Soc A (2021).

Balancing Partial Derivatives: Data-Driven Approach ⁶

- kind of self-gating, like XD-GRASP or GRASP-Pro
- Solution: to track the scaling value from measured k-space data

$$s = 0.5 \cdot \frac{\|y_1\|_2 + \|y_2\|_2}{\|y_1 - y_2\|_2}$$

⁶Tan Z, et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. *Magn Reson Med* (2017). What I have done | in Frahm lab

Balancing Partial Derivatives: Eigenvalue Approach 7

- 1. kind of numerical methods, like batch normalization
- 2. to compute the matrix norm of the derivative operator

⁷**Tan Z**, et al. An eigenvalue approach for the automatic scaling of unknowns in model-based reconstructions: Application to real-time phase-contrast flow MRI. *NMR Biomd* (2017). What I have done | in Frahm Tab.

Real-Time Aortic Blood Flow MRI at 36 ms

magnitude images

phase-difference maps

Multi-Echo Radial Sampling^{8,9}

- use blip gradients to traverse among echoes
- use spoiler gradients for stack-of-stars volumetric acquisition

⁸**Tan Z**, et al. Dynamic water/fat separation and B_0 inhomogeneity mapping – joint estimation using undersampled triple-echo multi-spoke radial FLASH. Magn Reson Med (2019).

⁹Tan Z, et al. Free-breathing liver fat, R_2^* and B_0 field mapping using multi-echo radial FLASH and regularized model-based reconstruction. *IEEE Trans Med Imaging* (2023).

▶ to solve a generalized nonlinear inverse problem

$$\Phi(x) = \operatorname{argmin}_{x} \|\mathbf{y} - \mathbf{PFCB}(x)\|_{2}^{2} + \lambda R(x)$$

$$x = (W, F, R_{2}^{*}, f_{B_{0}}, c_{1}, \cdots, c_{N})^{T}$$
(3)

▶ to solve a generalized nonlinear inverse problem

$$\Phi(x) = \operatorname{argmin}_{x} \|\mathbf{y} - \mathbf{PFCB}(x)\|_{2}^{2} + \lambda R(x)$$

$$x = (W, F, R_{2}^{*}, f_{B_{0}}, c_{1}, \cdots, c_{N})^{T}$$
(3)

multi-echo gradient echo signal model

$$B(x): \rho_m = (W + F \cdot z_m) \cdot e^{-R_2^* T E_m} \cdot e^{i2\pi f_{B_0} T E_m}$$
(4)

to solve a generalized nonlinear inverse problem

$$\Phi(x) = \operatorname{argmin}_{x} \|\mathbf{y} - \mathbf{PFCB}(x)\|_{2}^{2} + \lambda R(x)$$

$$x = (W, F, R_{2}^{*}, f_{B_{0}}, c_{1}, \cdots, c_{N})^{T}$$
(3)

multi-echo gradient echo signal model

$$B(x): \rho_m = (W + F \cdot z_m) \cdot e^{-R_2^* T E_m} \cdot e^{i2\pi f_{B_0} T E_m}$$
(4)

▶ Cons: the field inhomogeneity map (f_{B_0}) is sensitive to initial guess

Appliation #2: Volumetric Brain T_2^* -Weighted Imaging ¹⁰

- spatial resolution 1 mm isotropic
- ▶ 35 echoes per excitation and 7 shots per partition
- use <u>linear</u> subspace modeling and reconstruction instead

¹⁰Tan Z, et al. under review

Brain Diffusion MRI at 7 T

Challenges:

- 1. Specific Absorption Rate (SAR) is linearly proportional to the square of B_0
- 2. Shorter T_2 relaxation at 7 T
- 3. Increased sensitivity to field inhomogeneity, incl. B_0 and B_1

Brain Diffusion MRI State-of-the-Art: MUSE ¹¹

- uses 4-shot interleaved EPI (iEPI), resembling a fully-sampled k-space
- self-navigated shot-to-shot phase variation estimation
- limited number of shots has been reported

¹¹Chen NK, et al. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). *NeuroImage* (2013).

What I have done | in Knoll lab

Undersampled iEPI with k_{ν} Shift Encoding ¹²

Acceleration factor per shot:

 $R_{
m shot} = R_{
m in-plane} imes N_{
m shot}$

¹²Tan Z, et al. *under review*.

What I have done | in Knoll lab

(5)

NAViEPI: where iEPI meets rsEPI

- Navigator-based iEPI with consistent effective ESP between echoes
- enables:
 - 1. minimal distortion mismatch between echoes
 - 2. flexible number of shots
 - 3. reliable shot-to-shot phase estimation

What I have done | in Knoll lab

Efficiency of NAViEPI

3-scan trace acquisition with voxel size 0.5 X 0.5 X 2.0 $\rm mm^3$

B_1^+ Field Inhomogeneity Challenge

3-scan trace acquisition with voxel size 0.5 X 0.5 X 2.0 mm³

JETS-NAViEPI: Reproducibility

Is NAViEPI a Reasonable Approach?

 \blacktriangleright In the sub-mm case, the base resolution is 440 \times 440

	Required phase-encoding lines (ETL)		
	1-Shot EPI	4-Shot MUSE	5-Shot NAViEPI
partial Fourier ($\times(6/8)$)	330		
Acceleration $(/R_{in-plane})$	110	330	110
Shots $(/N_{shot})$	110	pprox 82	22

 $\rightarrow\,$ Much reduced spatial distortion with NAViEPI

Inspirations: Speed, Phase, Echo

Inspirations: Speed, Phase, Echo

Inspirations: Speed, Phase, Echo

Connecting MR in a changing world: Look outwards & inwards

acquisition of spatial harmonics (SMASH) method.

would are not see the second of the second s students not to spenses. For example, Mark Grisvold, who was work- Dare The fact that we have grown so much laws

fray, and parameters and the second races, annual meetings, here

Dass I think that two categories of early responses were large was the meeting in Vancouvert

the ISMRM annual meeting?

listen to me too in me frie few months at Beth Israel Descoress Medical used to feel manageable. Time was, one could not carefully, but, we saved working together. Bob himself was an enthu- scope of changes in the field. Now there are so more rather, to take brad, and he want becare a third muskater and erea- some of the early sense of intimacy has been bed to be their ignorance. very gostifying, though the lead-in as the meeting was er's brilliantly-conceived and highly successful Sort

increasingly, look outwards as well as inwards. Given the ISMRM initiative on High-Value MR7

What I have done

THE MAGNETIC RESONANCE IN MEDICINE HIGHLIGHTS I APRIL 2018 I MOLUME THREE Inspirations

Deep Learning: Any Novelty or Significance?

Trustworthy

► Explainable

- Robust
- Data-Efficiency

Deep Learning: Any Novelty or Significance?

Trustworthy

Explainable

- Robust
- Data-Efficiency

- ▶ nonlinear \rightarrow linear \rightarrow nonlinear
- ✓ Deep learning frameworks offer powerful optimizers!

Preliminary Work on Deep Learning: AutoEncoder

Preliminary Work on Deep Learning: 1.2 mm Isotropic Resolution ¹³

¹³Soundarresan S, Tan Z, et al. *submitted to ESMRMB*

What I have done | Deep Learning Empowered Image Reconstruction

Preliminary Work on Deep Learning: Latent Signal

Summary

Thank You for Your Attention!

1. This talk won't be possible without these great people:

- Dr. Jens Frahm and his team
- Dr. Martin Uecker and his team
- Dr. Florian Knoll and his team
- Dr. Robin Heidemann
- Dr. Patrick Liebig
- Dr. Frederik Laun
- Ms. Soundarya Soundarresan

Thank You for Your Attention!

1. This talk won't be possible without these great people:

- Dr. Jens Frahm and his team
- Dr. Martin Uecker and his team
- Dr. Florian Knoll and his team
- Dr. Robin Heidemann
- Dr. Patrick Liebig
- Dr. Frederik Laun
- Ms. Soundarya Soundarresan
- 2. Thank you for your attention again.