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Introduction

Model-based reconstruction [1,2] involves two ingredients: (1) a nonlinear for-
ward model, and (2) the minimization of the nonlinear inverse problem with regular-
ization to solve for the corresponding model parameters. Thus, its implementation
requires the construction of nonlinear operators and their corresponding Jacobian
matrices during the minimization procedure. It becomes even more complicated
when advanced regularization (e.g. ℓ1 soft-thresholding) is employed.

To address these challengens, we built a generalized nonlinear operator
framework in SigPy, stemming from its object-oriented linear operator abstraction
[3]. Further, we implemented a general nonlinear inversion solver that alternates
between model parameters update and advanced regularization terms.

Contribution 1: Nonlinear Operator Abstraction

For instance, diffusion tensor imaging (DTI) [4] presents a nonlinear operator:

E : x = (b0, D)T 7→ y = b0 · exp(B ×D) (1)

where b0 and D are the non-diffusion-weighted image and the diffusion tensor,
respectively. B is the diffusion encoding matrix. y are the diffusion-weighted im-
ages. In Python, such an nonlinear operator is constructed with the following class:

class Nlop() :
def _forward(self, x) : # compute the forward model output
def _get_Jacobian(self, x) : # compute the forward model′s Jacobian matrix
def _derivative(self, x, dx) : # evaluate derivative
def _adjoint(self, x, dy) : # evaluate conjugate transpose of derivative

Further, we provided a child class "Compose" to allow for the chain between
nonlinear operators and linear operators (such as the parallel imaging model).
Therefore, the complete nonlinear forward model in diffusion tensor imaging is,

A : MΣFSΦE (2)

which presents diffusion tensor imaging with multi-band multi-coil acquisition.
Specifically, diffusion-weighted images computed from E is multiplied by shot-to-
shot phase variation Φ and then by coil sensitivity maps S. Note that S is FOV
shifted in accordance with CAIPIRINHA [5]. The multi-slice multi-coil diffusion-
weighted images are then Fourier transformed F and collapsed in the slice dimen-
sion Σ. Finally, the collapsed k-space is masked by sampling pattern M.

Contribution 2: Nonlinear Least Square Solver

Nonlinear inverse reconstruction of diffusion tensor model parameters x in
eq. (1) reads,

argmin
x

∥y −A(x)∥22 + λR(Tx) (3)

where y is the measured k-space data. R(x) is the regularization on transformed
Tx with regularization strength λ. Here, we proposed to split the nonlinear least
square part and the regularization part using the alternating direction method of
multipliers (ADMM) [6],

x(k+1) := argmin
x

∥∥∥y −A(x(k))
∥∥∥2
2
+ ρ/2

∥∥∥Tx(k) − z(k) + u(k)
∥∥∥2
2

z(k+1) := Tλ/ρ(Tx(k+1) + u(k))

u(k+1) := u(k) + Tx(k+1) − z(k+1)

(4)

x update is solved with the iteratively regularized Gauss-Newton method, whereas
z update is solved with the proximal operator as singular value thresholding [7].

Methods

In vivo brain diffusion MRI with 2-shot interleaved echo planar imaging (EPI)
was conducted at 7T (Terra, Siemens Healthineers, Erlangen, Germany) with 32-
channel receive coils. Acquisition parameters were 1.2mm isotropic resolution with
94 slices, 3-fold in-plane acceleration, multi-band factor 2, and total scan time of
5min. 30 diffusion directions with b-value 1000 s/mm2 and 2 directions with b-value
50 s/mm2.

To solve eq. (3), the unknowns b0 and D were initialized with 10−4 and 0, re-
spectively. λ = 10−6 and ρ = 10−3. x was updated with 4 Gauss-Newton steps, and
a total of 6 ADMM iterations were employed.

Results

Fig. 1: Diffusion tensor maps reconstructed by (top) parallel imaging with pixel-wise model fitting
and (bottom) model-based reconstruction. The model-based reconstruction shows reduced

noise in the off-diagonal tenor maps.

Discussion & Conclusion

• Nonlinear operator abstraction in SigPy;
• Nonlinear least square solver with advanced regularization terms;
• Examples in 7T diffusion MRI show reasonable results compared to parallel
imaging with pixelwise model fitting;

• This framework may allow for fast prototyping and testing.
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