

TECHNISCHE FAKULTÄT

Deep Learning Image Reconstruction in MRI

Zhengguo Tan

Department Artificial Intelligence in Biomedical Engineering (AIBE) June 28, 2022

Outline

Magnetic Resonance Imaging

Image Reconstruction in MRI Parallel Imaging Compressed Sensing

Deep Learning Image Reconstruction in MRI

Image Reconstruction in Diffusion MRI

Radial Echo-Planar Imaging

Summary

TECHNISCHE FAKULTÄT

1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI)

 ✓ Lauterbur PC. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. *Nature* (1977).

Magnetic Resonance Imaging (MRI)

 ✓ Lauterbur PC. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. *Nature* (1977).

- ✓ Mansfield P. Multi-planar imaging formation using NMR spin echoes. J Phys C (1977).
- ✓ Stehling MK, Turner R, Mansfield P. Echo-planar imaging: MRI in a fraction of a second. *Science* (1991).

- A. MRI acquires data in Fourier domain (*k*-space).
- B. MR Image can be reconstructed via Fast Fourier Transform (FFT).
- C. 2D-FT imaging requires one excitation per k-space line.
- D. In EPI, *k*-space is sampled in a single, continuous trajectory within a fraction of a second.

¹Stehling MK, et al. *Science* (1991).

- A. MRI acquires data in Fourier domain (*k*-space).
- B. MR Image can be reconstructed via Fast Fourier Transform (FFT).
- C. 2D-FT imaging requires one excitation per *k*-space line.
- D. In EPI, *k*-space is sampled in a single, continuous trajectory within a fraction of a second.
- X Trade-off between spatial/temporal resolution and SNR.

¹Stehling MK, et al. *Science* (1991).

- A. MRI acquires data in Fourier domain (*k*-space).
- B. MR Image can be reconstructed via Fast Fourier Transform (FFT).
- C. 2D-FT imaging requires one excitation per *k*-space line.
- D. In EPI, *k*-space is sampled in a single, continuous trajectory within a fraction of a second.
- X Trade-off between spatial/temporal resolution and SNR.
- X Point-wise sampling of *k*-space requires long scan time.

¹Stehling MK, et al. *Science* (1991).

- A. MRI acquires data in Fourier domain (*k*-space).
- B. MR Image can be reconstructed via Fast Fourier Transform (FFT).
- C. 2D-FT imaging requires one excitation per *k*-space line.
- D. In EPI, *k*-space is sampled in a single, continuous trajectory within a fraction of a second.
- X Trade-off between spatial/temporal resolution and SNR.
- X Point-wise sampling of *k*-space requires long scan time.
- X Perturbed *k*-space data, e.g. subject motion, trajectory imperfection, field inhomogeneity ...

¹Stehling MK, et al. *Science* (1991).

TECHNISCHE FAKULTÄT

2 Image Reconstruction in MRI

Outline

Magnetic Resonance Imaging

Image Reconstruction in MRI Parallel Imaging Compressed Sensing

Deep Learning Image Reconstruction in MRI

Image Reconstruction in Diffusion MRI

Radial Echo-Planar Imaging

Summary

Parallel Imaging: Multiple Receiver Coils²

 $\checkmark\,$ Boost SNR with no increase in scan time.

²Roemer PB, et al. The NMR phase array. *Magn Reson Med* (1990).

Parallel Imaging in Combination with *k***-Space Undersampling**

- Data source: https://fastmri.org/.
- Image reconstruction via inverse FFT and root sum square over coils.

Parallel Imaging in Combination with *k***-Space Undersampling**

- Data source: https://fastmri.org/.
- ▶ *k*-space undersampling causes artifacts. In this case, acceleration factor R = 2.

Multiple Coil Images & Calibrated Coil Sensitivity Maps³

³Uecker M, et al. ESPIRIT – An eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA. *Magn Reson Med* (2014).

Parallel Imaging Reconstruction: SENSE 4, 5

⁴Pruessmann KP, et al. SENSE: Sensitivity encoding for fast MRI. *Magn Reson Med* (1999).

⁵Pruessmann KP, et al. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med (2001).

Parallel Imaging Reconstruction: SENSE ^{4, 5}

⁵Pruessmann KP, et al. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med (2001).

⁴Pruessmann KP, et al. SENSE: Sensitivity encoding for fast MRI. *Magn Reson Med* (1999).

Parallel Imaging Reconstruction: SENSE

fully-sampled

R = 4

Outline

Magnetic Resonance Imaging

Image Reconstruction in MRI Parallel Imaging Compressed Sensing

Deep Learning Image Reconstruction in MRI

Image Reconstruction in Diffusion MRI

Radial Echo-Planar Imaging

Summary

Compressed Sensing 6, 7

⁶Candès EJ, et al. Stable signal recovery from incomplete and inaccurate measurements. *Commun Pure Appl Math* (2006).
⁷Lustig M, et al. Sparse MRI: The application of compressed sensing for rapid MRI. *Magn Reson Med* (2007).

Parallel Imaging Compressed Sensing (PICS) Reconstruction ^{8, 9}

► SENSE solves a linear inverse problem:

$$\Phi(x) = \operatorname{argmin}_{x} \|\mathcal{F}_{u}Sx - y\|_{2}^{2} + \alpha \|x\|_{2}^{2}$$
(2)

$$(S^* \mathcal{F}_u^{-1} \mathcal{F}_u S + \alpha) x = S^* \mathcal{F}_u^{-1} y$$
(3)

▶ PICS with ℓ^1 regularization:

$$\Phi(x) = \operatorname{argmin}_{x} \left\| \mathcal{F}_{u} S x - y \right\|_{2}^{2} + \alpha \left\| T x \right\|_{1}$$
(4)

⁸https://github.com/mrirecon/bart ⁹https://github.com/mikgroup/sigpy

Z. Tan · AIBE · Learned MRI

Compressed Sensing

TECHNISCHE FAKULTÄT

3 Deep Learning Image Reconstruction in MRI

Variational Network ¹⁰

$$\min_{u} \left\{ \mathcal{R}(u) + \frac{\lambda}{2} \|Au - f\|_{2}^{2} \right\}$$
(5)
$$\mathcal{R}(u) = \sum_{i=1}^{N_{k}} \langle \Phi_{i}(K_{i}u), 1 \rangle$$
(6)
$$u^{(t+1)} = u^{(t)} - \alpha^{(t)} \left(\sum_{i=1}^{N_{k}} (K_{i})^{T} \Phi_{i}'(K_{i}u^{(t)}) + \lambda A^{*}(Au^{(u)} - f) \right)$$
(7)

¹⁰Hammernik K, et al. Learning a variational network for reconstruction of accelerated MRI data. *Magn Reson Med* (2018).

Self-Supervised Learning¹¹

¹¹Yaman B, et al. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. *Magn Reson Med* (2020).

Self-Supervised Learning

TECHNISCHE FAKULTÄT

4 Image Reconstruction in Diffusion MRI

Image Reconstruction in Diffusion MRI: Diffusion-weighted images

Single-shot EPI diffusion acquisition, $1.5 \times 1.5 \text{ mm}^2$ resolution with in-plane undersampling factor 2, 3 mm slice thickness, $b = 1000, 1000, 2000, 2500 \text{ s/mm}^2$

Image Reconstruction in Diffusion MRI: Diffusion Tensors $[\mu m^2 ms^{-1}]$

Single-shot EPI diffusion acquisition, $1.5 \times 1.5 \text{ mm}^2$ in-plane resolution, 3 mm slice thickness. $b = 100, 500, 1000 \text{ s/mm}^2$.

TECHNISCHE FAKULTÄT

5 Radial Echo-Planar Imaging

Radial Echo-Planar Imaging

Radial Echo-Planar Imaging

TECHNISCHE FAKULTÄT

6 Summary

SAE FRIDER
The states
A A A A A A A A A A A A A A A A A A A
SIGNING SIGN

Summary

- A brief introduction to MRI
- Developments of image reconstruction in MRI: parallel imaging and compressed sensing
- Deep learning image reconstruction: Variational network
- Diffusion MRI: high-dimensional MRI
- Radial EPI: Combination of motion robustness and distortion free from radial sampling with fast acquisition from EPI
- Computational Imaging Lab of Prof. Dr. Florian Knoll: https://www.cil.tf.fau.de/