INTRODUCTION

Fat is a metabolically active component of the human body. Excessive fat in the liver can progress into fibrosis and liver cancer. Chemical-shift encoded magnetic resonance imaging (MRI) [1, 2, 3] has been proven capable of non-invasively quantifying fat fraction in the liver. To work well, these methods require lengthy breath holding and high signal-to-noise (SNR) images. This study aims to develop a free-breathing liver fat and \(R^*_2 \) quantification technique using multi-echo radial FLASH and model-based reconstruction (MERLOT).

METHODS

Multi-Echo Radial FLASH Sampling

Figure 1 illustrates the implemented multi-echo radial FLASH MRI sequence [4]. After a radio frequency (RF) excitation with the slice-selection gradient \(G_s \), seven echoes with different \(k \)-space spokes are acquired. The acquired echoes are color coded, while the black solid lines indicate either the ramp or the blip gradients.

Model-based Reconstruction

The acquired MR signal, \(y_{j,m}(t) \), is based on the Fourier transformation:

\[
y_{j,m}(t) = \int d\vec{r} e^{-i2\pi f(t)} r_j \rho_m(\vec{r}) .
\]

(1)

The sampling trajectory \(\vec{k}(t) \) is from the time integral of readout gradients \(G_s \) and \(G_r \) (see Figure 1). When one image voxel contains both water (W) and fat (F) species, the echo image \(\rho_m \) is modeled as:

\[
S : (W, F, R^*_2, f_{Bo}) \rightarrow \rho_m : (W + F \cdot z_m) \cdot e^{-R^*_2 T_{E_{m}}} \cdot e^{i2\pi f_{Bo} T_{E_{m}}}. \quad (2)
\]

Here, \(z_m = \sum_{p=1}^{6} \alpha_p \cdot e^{i2\pi f_{p} T_{E_{m}}} \) denotes the six-peak fat spectrum. \(R^*_2 \) and \(f_{Bo} \) is the transversal relaxation rate and magnetic field inhomogeneity, respectively. Equations (1) and (2) can be chained together and written in the operator form:

\[
y_{j,m} = F_{j,m}(x) := P_m \mathcal{F} M S \mathcal{B}, \quad (3)
\]

with \(x = (W, R^*_2, f_{Bo}, c_1, \cdots, c_N)^T \). \(F_{j,m}(x) \) denotes the forward operator, \(j \) is the the coil index \([j \in [1, N]] \), and \(m \) the echo index \([m \in [1, E]] \). The nonlinear operator \(\mathcal{B} \) calculates echo images. Every echo image is then point-wise multiplied by a set of coil sensitivity maps in \(x \), as denoted by \(S \). All coil images are then masked to a given field of view \(M \), Fourier-transformed (\(\mathcal{F} \)), and sampled \((P) \) at each echo.

Fat and \(R^*_2 \) mapping is achieved via joint estimation of the unknown \(x \), i.e. minimizing the least square difference between the measured data \(y \) and the forward model under regularizations based on a priori knowledge of unknowns,

\[
\text{minimize} \; ||y - F(x)||_2^2 + \lambda_1 ||W(E_1 x)||_1 + \lambda_2 ||T_W(E_2 x)||_1 + \lambda_3 ||x||_2^2 \quad \text{subject to} \; R^*_2 \geq 0 \quad (4)
\]

We applied Wavelet regularisation and temporal total variation (TV) regularisation on the physical parameters in Equation (2), \(\ell^2 \) regularisation on \(x \), and non-negativity constraint on \(R^*_2 \).

RESULTS & DISCUSSION

Figure 2 shows reconstruction results of two subjects from the proposed MERLOT, and the Siemens reference method, respectively. Clearly, Subject #7 shows elevated FF values in the liver from both methods, indicating fatty liver disease. \(R^*_2 \) is a physical quantity linearly proportional to iron concentration. \(R^*_2 \) values of both subjects are in the normal range.

CONCLUSION

A free-breathing liver fat and \(R^*_2 \) mapping technique has been developed and evaluated in subjects with fatty liver disease.

ACKNOWLEDGEMENTS

We would like to thank Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for the grant support on TA1473/2-1 & UE189/4-1.

REFERENCES