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Synopsis
Parallel imaging for reduction of scanning time is now routinely used in clinical practice. The spatial information from the coils’ pro�les are exploited

for encoding. The nonlinear inversion reconstruction is a calibrationless parallel imaging technique, which jointly estimate coil sensitivities and

image content. In this work, we demonstrate how to combine such a calibrationless parallel imaging technique with an advanced neural network

based image prior for e�cient MR imaging.

Introduction
Model-based reconstruction with regularization terms on the image is �exible and e�cient in improving the reconstruction quality when k-space

data is highly undersampled. Recently, several deep learning based reconstruction methods have been proposed for MRI acceleration. However,

most of them rely on speci�c sampling patterns and precomputed coil sensitivities for supervised training, limiting their �exibility in applications. In

this work, we present an approach to jointly estimate the coil sensitivities and image regularized by an image prior [2] that is sampling pattern

independent. Furthermore, we validated the proposed method with radial k-space data acquired for a human brain.

Theory
Parallel MR imaging can be formulated as a nonlinear inverse problem as follow

where  is an undersampled Fourier transform operator and the corresponding k-space data is ,  denotes the spin density and

 denotes coil sensitivities. Proposed in the nonlinear inverse reconstruction (nlinv) [1], this problem can be solved with the

Iteratively Regularized Gauss Newton Method (IRGNM) by estimating  in each step  for given  with the following

minimization problem

where  is a penalty on the high Fourier coe�cients of the coil sensitivities and  is a regularization term on . The

 and  decay based on reduction factor over iteration steps. In this work, the neural network based log-likelihood prior was investigated [2],

formulated with following joint distribution

where the neural network  outputs the distribution parameters of the mixture of logistic distribution which was used to model images.

For each step, the fast iterative gradient descent method (FISTA) [3] is used to minimize Eq (1). The proximal operation on  was

approximated using gradient updates. The gradient of  is computed via backpropagation.

Methods
To obtain a generic image prior for the nonlinear inversion reconstruction, we trained the PixelCNN++ with aliased-free brain images. Then, the

computation graph of the neural network and the trained model were exported with TensorFlow. The inference using the trained model was

implemented via TensorFlow C API within BART toolbox's framework. The optimization algorithm was then based on existing functionality in BART.

For validation, T2 -weighted data (TE=16ms, TR=770ms, 3T) from a human brain was acquired with a GRE sequence. The image matrix was 256 256

and the resolution was 1mm 1mm. We acquired 160 radial k-space spokes using golden angle radial trajectory (2.5-fold acceleration). The gradient

delay of radial trajectories was estimated with RING [4]. The number of channels was compressed to eight. At last, we reconstructed images from a

di�erent number of spokes (50, 70, 160) and made comparisons of di�erent regularization terms that includes , -wavelet and learned log-

likelihood.

Results
The comparisons of reconstructions using di�erent regularization were shown in Figure 1, including the moderate undersampling (2.5-fold

acceleration) and the high undersampling k-space data (5.74-fold/ 8-fold acceleration). The learned log-likelihood prior tends to smooth images and

suppress noises but preserves the boundaries between tissues well. One set of coil sensitivities estimated from 50 radial k-space spokes is shown in

Figure 2. Figure 3 presents the structural similarity indices of reconstructions from di�erent numbers of radial k-space spokes.

Conclusion and Discussion
We demonstrated how a learned log-likelihood prior trained from aliased-free images can be incorporated into calibration-less parallel imaging

compressed sensing reconstruction using nonlinear inversion. One advantage of the proposed method is that the same prior can be used with

di�erent sampling patterns. Learning the intrinsic relationship between the pixels from aliased-free images, the log-likelihood prior shows better

performance over -wavelet prior.
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Figures

Figure 1. For the case of moderate undersampling, the two reconstructions regularized by log-likelihood and  are very close, and the structural

similarity index between them is 0.95. The  reconstruction has blocky artifacts in Region 1 introduced by the wavelet transform, especially for

higher undersampling. Overall, the learned log-likelihood outperforms  in noise suppression, especially in Region 2. The reconstructions

regularized by the learned log-likelihood also better preserve the boundaries between tissues and have less noise.

Figure 2. Reconstructed coil sensitivities (grayscale magnitude and color-coded phase) after channel compression.

Figure 3. Computed SSIMs of -nlinv and logp-nlinv based reconstructions (8x and 5.74x undersampling) with respect to 160 radial spokes.
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